ARM Assembly

Young W. Lim

June 8, 2016



Copyright (c) 2011-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".




ARM Assembly Categories

Arithmetic
Data Transfer
Logical

Conditional Branch

Unconditional Branch



ARM Assembly Category Instructions

@ Arithmetic :
add, subtract
@ Data Transfer :
load/store (halfword / halfword / Byte) (signed),
swap, mov
o Logical :
and, or, not,
logical shift (right/left)
@ Conditional Branch :
compare, branch on conditions

@ Unconditional Branch :
brach, branch and link



Arithmetic Instructions

add r1, r2, r3 ; rl
sub rl, r2, r3 ; rl

r2 + r3
r2 - r3



Data Transfer Instructions

ldr r1, [r2, #20]
ldrh r1, [r2, #20]
ldrhs r1, [r2, #20]
ldrb 1, [r2, #20]
ldrbs r1, [r2, #20]
str ril, [r2, #20]
strh ri, [r2, #20]

swap ri, [r2, #20]
mov rl, r2

; rl
; rl
; rl
; rl
; rl
; M[r2+20] = r1

; M[r2+20] = r1, halfword

= M[r2+20]

= M[r2+20], halfword

= M[r2+20], halfword, signed
= M[r2+20]

=r2 + r3

; Tl <-> M[r2+20]
; rl = r2



Logical Instructions

and rl, r2, r3 ; rl =12 & r3
orr rl, r2, r3 ; rl =r2 | r3
mvn rl, r2 ; rl = 7r2

1sl rl, r2, #10 ; rl = r2 << 10

lsr rl, r2, #10 ; rl = r2 >> 10



Conditional Branch Instructions

cmp rl, r2 ; flag set by ri1-r2
beq 25 ; goto PC+8+(25%4) if Z set

eq, ne, 1lt, le, gt, ge, lo, 1s, hi, hs, vs, vc, mi, pl



Unconditional Branch Instructions

b 25 ; goto PC+8+(25%4)
bl 25 ; r14=PC+4, goto PC+8+(25%4)



Summary 1

ADC
ADD
AND
B
BIC
BL
BX
CDP
CMN
CMP
ECR
LDC
LDM
LDR

ADD with Carry (Rd = Rn + 0p2 + Carry)

ADD (Rd = Rn + 0p2)

AND (Rd = Rn & 0p2)

Branch (R15 = address)

BIt Clear (Rd = Rn & ~0p2)

Branch and Link (R14 = R15, R15 = address)
Branch and Exchange (R15 = Rn, T bit = Rn[0])
Coprocessor Data Processing

Compare Negative (CPSR flags = Rn + 0Op2)
Compare (CPSR flags = Rn - 0Op2)

Exclusive OR (Rd = Rn ~ 0p2)

Load Coprocessor from memory

Load Multiple Registers (Pop the stack)
Load Register from memory (Rd = address)



Summary 2

MCR
MLA
MRC
MRS
MSR
MUL
MVN
ORR
RSB
RSC
SBC

Move CPU reg to Coproc reg (cRn = Rn {<op>cRm}
Multiply Accumulate (Rd = (Rm * Rs) + Rn)MOV Move re;
Move from Coproc reg to CPU reg (Rn = cRn {<op>cRm})
Move PSR status/flags to register (Rn = PSR)

Move register to PSR status/flags (PSR = Rm)

Multiply (Rd = Rm * Rs)

Move Negative Register (Rd = OxFFFFFFFF ~ 0p2)

OR (Rd = rn | 0p2)

Reverse Subtract (Rd = Op2 - Rn)

Reverse Subtract with Carry (Rd = Op2 - Rn -1 +Carry)
Subtract with Carry (Rd = Rn - 0p2 -1 +Carry)



Summary 3

STC
STM
STR
SUB
SWI
SWP
TEQ

Store Coproc reg to memory (address = cRn)
Store Multiple (Push the stack)
Store register to memory (<address> = Rd)

Subtract (Rd = Rn - 0p2)

Software Interrupt (0S system call)

Swap register with memory (Rd <-> [Rn])

Test bitwise equality (CPSR flags = Rn ~ 0p2)

TST Test bits (CPSR flags = Rn & 0p2)



Addressing Modes

Immediate/Register/Sacled Register Offset
Scaled Register Offset

Immediate Pre/Post-Indexed

Register Pre/Post-Indexed

Scaled Register Pre-Indexed

Immediate

Register

Scaled Register

PC-relative Addressing



Cond Field

®© 6 6 6 6 6 6 6 6 6 6 6 0 o o o

EQ (EQaul)
E (Not Equal)

S (unsigned Higher or Same)

O (unsigend LOwer)

MI (Minus, <0)

PL (PLus, >0)

VS (oVerflow Set, overflow)

VC (oVerflow Clear, no overflow)
HI
LS
GE
LT (signed Less Than)

GT (signed Greater Than)

LE (signed Less than or Equal)
AL (ALways)

NV (reserved)

—

unsigned Hlgher)

—

unsinged Lower or Same)

—~

signed Greater than or Equal)

—~



Across Procedure Calls

@ Preserved

» Variable registers : r4-rl1l

» Stack pointer register : sp

> Link register : Ir

» Stack above the stack pointer

@ Not preserved

» Argument registers : r0-r3
> Intra-procedure-call scratch register : r12
» Stack below the stack pointer



ABI Register Conventions

al-a2 : 0-1, Argument / return result / scratch register, changing
a3-a4 : 2-3, Argument / scratch register, changing

v1-v8 : 4-11, Variables for local routine, preserved

ip: 12, Intra-procedure call scratch register, changing

sp, 13, Stack pointer, preserved

Ir, 14, Link register (return address), preserved

pc, 15, Program counter, N.A



Reference

[1] D. Harris, Digital Design and Computer Architecture”, 2nd ed.

[2] D.A. Patterson & J.H. Hennessy, Computer Organization and Design
(ARM ed)



