
ELF2 4A Dynamic Linking

Young W. Lim

2019-10-28 Mon

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 1 / 19



Outline

1 Based on

2 Shared Object File

3 Run time linking

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 2 / 19



Based on

Oracle Document
https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/
chapter4-1/index.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 3 / 19

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter4-1/index.html
https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter4-1/index.html


Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 4 / 19



PIC shared object

When a shared object is built from PIC,
relocatable references are generated as indirections
through data in the shared object’s data segment.

The code within the text segment requires no modification.

All relocation updates are applied to corresponding entries
within the data segment.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter4-1/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 5 / 19



GOT (1)

Position-independent code cannot, in general, contain
absolute virtual addresses.
Global offset tables hold absolute addresses in private data
Addresses are therefore available without compromising the
position-independence and shareability of a program’s text.
A program references its GOT using position-independent addressing
and extracts absolute values.

This technique redirects position-independent references to absolute
locations.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter4-1/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 6 / 19



GOT (2)

Initially, the GOT holds information
as required by its relocation entries.
After the system creates memory segments for a loadable object file,
the runtime linker processes the relocation entries.
Some relocations can be of type R_xxxx_GLOB_DAT,
referring to the GOT.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter4-1/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 7 / 19



GOT (3)

The runtime linker determines the associated symbol values,
calculates their absolute addresses,
and sets the appropriate memory table entries to the proper values.
Although the absolute addresses are unknown
when the link-editor creates an object file,
the runtime linker knows the addresses of all memory segments and
can thus calculate the absolute addresses of the symbols contained
therein.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter4-1/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 8 / 19



GOT (4)

If a program requires direct access to the absolute address of a
symbol, that symbol will have a GOT entry.
Because the executable file and shared objects have separate a GOT,
a symbol’s address can appear in several tables.
The runtime linker processes all the GOT relocations
before giving control to any code in the process image.
This processing ensures that absolute addresses are available
during execution.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter4-1/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 9 / 19



GOT (5)

The system can choose different memory segment addresses
for the same shared object in different programs.
The system can even choose different library addresses
for different executions of the same program.
Nonetheless, memory segments do not change addresses
once the process image is established.
As long as a process exists, its memory segments reside
at fixed virtual addresses.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter4-1/index.html

A GOT format and
interpretation are
processor-specific.
The symbol
GLOBAL_OFFSET_TABLE
can be used to access the table.
This symbol can reside in the
middle of the .got section,
allowing both negative and
nonnegative subscripts
into the array of addresses.
The symbol type is an array of
Elf32_Addr for 32–bit code,
and an array of Elf64_Addr for
64–bit code.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter4-1/index.html
Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 10 / 19



run time linking (1)

runtime linking involves the binding of objects,
usually generated from one or more previous link-edits,
to generate a runnable process.
During the generation of these objects by the link-editor,
appropriate bookkeeping information is produced
to represent the verified binding requirements.
This information enables the runtime linker to load, relocate,
and complete the binding process.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter1-3/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 11 / 19



run time linking (2)

During process execution, the facilities of the runtime linker
are made available.
These facilities can be used to extend the process’ address space
by adding additional shared objects on demand.
The two most common components involved in runtime linking are
dynamic executables and shared objects.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter1-3/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 12 / 19



run time linking (3)

Dynamic executables are applications that are executed
under the control of a runtime linker.
These applications usually have dependencies
in the form of shared objects,
which are located, and bound by the runtime linker
to create a runnable process.

Dynamic executables are the default output file
generated by the link-editor.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter1-3/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 13 / 19



run time linking (4)

Shared objects provide the key building-block
to a dynamically linked system.
A shared object is similar to a dynamic executable,
however, shared objects have not yet been assigned
a virtual address.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter1-3/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 14 / 19



run time linking (5)

Dynamic executables usually have dependencies
on one or more shared objects.

Typically, one or more shared objects must be bound
to the dynamic executable to produce a runnable process.

Because shared objects can be used by many applications,
aspects of their construction directly affect shareability,
versioning, and performance.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter1-3/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 15 / 19



run time linking (6)

Shared object processing by the link-editor or the runtime linker
can be distinguished by the environment
in which the shared object is used.

compilation environment
runtime environment

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter1-3/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 16 / 19



run time linking (7)

compilation environment

Shared objects are processed by the link-editor
to generate dynamic executables or other shared objects.
The shared objects become dependencies of the output file
being generated.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter1-3/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 17 / 19



run time linking (8)

runtime environment

Shared objects are processed by the runtime linker,
together with a dynamic executable,
to produce a runnable process.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter1-3/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 18 / 19



run time linking ()

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter1-3/index.html

Young W. Lim ELF2 4A Dynamic Linking 2019-10-28 Mon 19 / 19


	Based on
	Shared Object File
	Run time linking

