
ELF1 7C Executing Background - ELF Study 1999

Young W. Lim

2020-12-21 Mon

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 1 / 52



Outline

1 Based on

2 Executing dynamic executables
Entry point
Execution Sequence

3 Memory mapped I/O
Memory mapped I/O

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 2 / 52



Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 3 / 52

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html


Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 4 / 52



ELF header

defines whether to use 32-bit or 64-bit addresses.

contains three fields that are affected by
this setting and offset other fields that follow them.

e_entry (entry point)
e_phoff (program header table offset)
e_shoff (section header table offset)

The ELF header is 52 or 64 bytes long
for 32-bit and 64-bit binaries respectively.

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 5 / 52



ELF header example

$ readelf -h /bin/bash
ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2’s complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x805be30
Start of program headers: 52 (bytes into file)
Start of section headers: 675344 (bytes into file)
Flags: 0x0
Size of this header: 52
Size of program headers: 32
Number of program headers: 8
Size of section headers: 40
Number of section headers: 26
Section header string table index: 25

https://greek0.net/elf.html
Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 6 / 52



ELF header fields

typedef struct { typedef struct {
unsigned char e_ident[EI_NIDENT]; unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type; Elf64_Half e_type;
Elf32_Half e_machine; Elf64_Half e_machine;
Elf32_Word e_version; Elf64_Word e_version;
Elf32_Addr e_entry; Elf64_Addr e_entry;
Elf32_Off e_phoff; Elf64_Off e_phoff;
Elf32_Off e_shoff; Elf64_Off e_shoff;
Elf32_Word e_flags; Elf64_Word e_flags;
Elf32_Half e_ehsize; Elf64_Half e_ehsize;
Elf32_Half e_phentsize; Elf64_Half e_phentsize;
Elf32_Half e_phnum; Elf64_Half e_phnum;
Elf32_Half e_shentsize; Elf64_Half e_shentsize;
Elf32_Half e_shnum; Elf64_Half e_shnum;
Elf32_Half e_shstrndx; Elf64_Half e_shstrndx;

} Elf32_Ehdr; } Elf64_Ehdr;
// 52 bytes for 32-bit machines // 64 bytes for 64-bit machines

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 7 / 52



ELF header - e_ident field

0x00 4 e_ident[EI_MAG0] through e_ident[EI_MAG3]
0x04 1 e_ident[EI_CLASS]
0x05 1 e_ident[EI_DATA]
0x06 1 e_ident[EI_VERSION]
0x07 1 e_ident[EI_OSABI]
0x08 1 e_ident[EI_ABIVERSION]
0x09 7 e_ident[EI_PAD]

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 8 / 52



ELF header - e_entry field

This is the memory address of the entry point
from where the process starts executing.
This field is either 32 or 64 bits long
depending on the format defined earlier.

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 9 / 52



entry (1)

an entry point is where control is transferred
from the operating system to a computer program,
at which place the processor enters a program or
a code fragment and execution begins.

This marks the transition from load time
(and dynamic link time, if present) to run time

https://reverseengineering.stackexchange.com/questions/18088/start-analysis-at-any-position-in-elf-is-entry-point

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 10 / 52



entry (2)

1 In some operating systems or programming languages,
the initial entry is not part of the program
but of the runtime library

the runtime library initializes the program
then the runtime library enters the program.

2 In other cases, the program may call the runtime library
before doing anything when it is entered for the first time,

after the &runtime library returns,
the actual code of the program begins to execute.

https://reverseengineering.stackexchange.com/questions/18088/start-analysis-at-any-position-in-elf-is-entry-point

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 11 / 52



entry (3)

entry point is used to point at the location at which
the OS loader will start a program

for a given binary file (ELFBIN), use readelf -h ELFBIN
to read the binary’s header information (-h):

Entry point address: 0x400a80

after running objdump on the binary

0000000000400a80 <_start>:

https://reverseengineering.stackexchange.com/questions/18088/start-analysis-at-any-position-in-elf-is-entry-point

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 12 / 52



entry (4)

it is the _start function that prepares certain
parameters/registers before eventually calling main

400aa4: callq *0x20851e(%rip)
contains a program code.
the _start function is usually called
after all other sections of the binary have been loaded in memory.

after the main is done, the hlt instruction is executed
to terminate the execution in this example.

the hlt instruction is typically never reached
since __libc_start_main calls exit(2)
if main returns normall

https://reverseengineering.stackexchange.com/questions/18088/start-analysis-at-any-position-in-elf-is-entry-point

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 13 / 52



stripped executables

with gcc’s -g flag, an executable contains debugging information.

for each instruction there is information
which line of the source code generated it,
the name of the variables in the source code is retained and
can be associated to the matching memory at runtime etc.

strip can remove this debugging information
and other data included in the executable
which is not necessary for execution
in order to reduce the size of the executable.

https://unix.stackexchange.com/questions/2969/what-are-stripped-and-not-stripped-executables-in-unix

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 14 / 52



gcc -s

gcc being a compiler/linker, its -s option is
something done while linking
it’s not configurable

it has a set of information which it removes, no more no less.

removes the relocation information and the symbol table
which is not done by strip

Note that, removing relocation information
would have some effect on address space layout randomization

https://stackoverflow.com/questions/1349166/what-is-the-difference-between-gcc-s-and-a-strip-command

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 15 / 52



strip

strip can be run on an object file
which is already compiled.
has a variety of command-line options to
configure which information will be removed.
For example, -g strips only the debug information
Note that strip is not a bash command,
though you may be running it from a bash shell.
It is a command totally separate from bash,
part of the GNU binary utilities suite.

https://stackoverflow.com/questions/1349166/what-is-the-difference-between-gcc-s-and-a-strip-command

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 16 / 52



finding main function’s entry point (1)

once a program has been stripped,
there is no straightforward way to locate the function
that the symbol main would have otherwise referenced.

The value of the symbol main is not required
for program start-up:

https://stackoverflow.com/questions/9885545/how-to-find-the-main-functions-entry-point-of-elf-executable-file-without-any-s

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 17 / 52



finding main function’s entry point (2)

in the ELF format, the start of the program is specified
by the e_entry field of the ELF file header.
This field normally points to the C library’s initialization code,
and not directly to main.

While the C library’s initialization code does call main()
after it has set up the C run time environment,
this call is a normal function call
that gets fully resolved at link time

https://stackoverflow.com/questions/9885545/how-to-find-the-main-functions-entry-point-of-elf-executable-file-without-any-s

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 18 / 52



Execution sequence

1 Kernel does permission checks
2 Kernel attempts to determine the internal format.

It finds out it’s ELF and that it’s dynamically linked.
3 Kernel decodes the structure of the ELF executable,

finding the interpreter (ld—linux.so.2 or something).
It attempts to load the interpreter,
which itself is a statically linked ELF executable.

4 The interpreter, in user space, looks for and loads
the shared object files (extension .so, internal format ELF)
which are needed by the executable.
Once they are all loaded and relocated, control is passed
to the executable itself, at the entry point established.

https://www.quora.com/How-is-a-elf-file-executed-in-Linux

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 19 / 52



Manual load and execution (1)

1 Read the program headers

to find the LOAD directives and
determine the total length of mappings in pages.

2 Map the lowest-address LOAD directive
with the total length (which may be greater than the file length),
letting mmap assign you an address.
This will reserve contiguous virtual address space.

3 map the remainin LOAD directives
over top of parts of this mapping using MAP_FIXED.

https://stackoverflow.com/questions/6554825/how-do-i-load-and-execute-an-elf-binary-executable-manually

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 20 / 52



Manual load and execution (2)

4 Use the program headers to find the DYNAMIC vector,
which will in turn give you the address
of the relocation vectors

5 Apply the relocations
Assuming your binary was a static-linked PIE binary,
they should consist entirely of RELATIVE relocations
(just adding the base load address),
meaning you don’t have to perform any symbol lookups
or anything fancy.

https://stackoverflow.com/questions/6554825/how-do-i-load-and-execute-an-elf-binary-executable-manually

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 21 / 52



Manual load and execution (3)

6 Construct an ELF program entry stack
consisting of the following sequence of
system-word-sized values in an array on the stack:
ARGC ARGV[0] ARGV[1] ... ARGV[ARGC-1] 0 \

ENVIRON[0] ENVIRON[1] ... ENVIRON[N] 0 0

7 (This step requires ASM!)
Point the stack pointer at the beginning of this array and
jump to the loaded program’s entry point address
(which can be found in the program headers).

https://stackoverflow.com/questions/6554825/how-do-i-load-and-execute-an-elf-binary-executable-manually

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 22 / 52



ELF program header (1)

The program header table tells the system
how to create a process image
it is found at file offset e_phoff
and consists of e_phnum entries
each with size e_phentsize

The layout is slightly different in 32-bit ELF vs 64-bit ELF,
because the p_flags are in a different structure location
for alignment reasons.

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 23 / 52



ELF program header (2)

The Program Header Table contains information
for the kernel on how to start the program.

the LOAD directives specifies a loadable segment
parts of the ELF file get mapped into memory
The INTERP directive specifies an ELF interpreter
normally /lib/ld-linux.so.2

The DYNAMIC entry points to the .dynamic section
contains information used by the ELF interpreter
to setup the binary

https://www.ics.uci.edu/~aburtsev/143A/hw/hw2/hw2-elf.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 24 / 52



ELF program header example

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4
INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013 R 0x1

[Requesting program interpreter: /lib/ld-linux.so.2]
LOAD 0x000000 0x08048000 0x08048000 0xa0200 0xa0200 R E 0x1000
LOAD 0x0a0200 0x080e9200 0x080e9200 0x04b44 0x09728 RW 0x1000
DYNAMIC 0x0a0214 0x080e9214 0x080e9214 0x000d8 0x000d8 RW 0x4
NOTE 0x000148 0x08048148 0x08048148 0x00020 0x00020 R 0x4
GNU_EH_FRAME 0x0a0138 0x080e8138 0x080e8138 0x0002c 0x0002c R 0x4
GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4

https://greek0.net/elf.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 25 / 52



ELF program header fields (1)

typedef struct { typedef struct {
Elf32_Word p_type; Elf64_Word p_type;
Elf32_Off p_offset; Elf64_Word p_flags;
Elf32_Addr p_vaddr; Elf64_Off p_offset;
Elf32_Addr p_paddr; Elf64_Addr p_vaddr;
Elf32_Word p_filesz; Elf64_Addr p_paddr;
Elf32_Word p_memsz; Elf64_Xword p_filesz;
Elf32_Word p_flags; Elf64_Xword p_memsz;
Elf32_Word p_align; Elf64_Xword p_align;

} Elf32_Phdr; } Elf64_Phdr;
// 52 bytes for 32-bit machines // 64 bytes for 64-bit machines

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 26 / 52



ELF program header fields (2)

p_type : the kind of segment
this array element describes or how to interpret
the array element’s information.

p_offset : the offset from the beginning of the file
at which the first byte of the segment resides

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 27 / 52



ELF program header fields (3)

p_vaddr : the virtual address
at which the first byte of the segment resides in memory.

p_paddr : the segment’s physical address for systems
in which physical addressing is relevant

the system ignores physical addressing
for application programs,
this member has unspecified contents
for executable files and shared objects

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 28 / 52



ELF program header fields (4)

p_filesz : the number of bytes
in the file image of the segment, which can be zero.

p_memsz : the number of bytes
in the memory image of the segment, which can be zero.

p_flags : flags relevant to the segment.

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 29 / 52



ELF program header fields (5)

p_align : loadable process segments
must have congruent values
for p_vaddr and p_offset, modulo the page size.

this member gives the value
to which the segments are aligned
in memory and in the file
values 0 and 1 mean no alignment is required.
otherwise, p_align should be a positive,
integral power of 2,
p_vaddr should equal p_offset, modulo p_align

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 30 / 52



ELF program header field p_type (1)

PT_NULL 0 unused
PT_LOAD 1 a loadable segment
PT_DYNAMIC 2 dynamic linking information
PT_INTERP 3 an interpreter path name
PT_NOTE 4 auxiliary information
PT_SHLIB 5 unspecified semantics
PT_PHDR 6 the program header table
PT_LOSUNW 0x6ffffffa sun microsystems
PT_SUNWBSS 0x6ffffffb sun microsystems
PT_SUNWSTACK 0x6ffffffa sun microsystems
PT_HISUNW 0x6fffffff sun microsystems
PT_LOPROC 0x70000000 a processor specific semantics
PT_HIPROC 0x7fffffff a processor specific semantics

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 31 / 52



p_type = PT_LOAD segment entry

specifies a loadable segment, described by

p_filesz (the segment’s file size) and
p_memsz (the segment’s memory size)

The bytes from the file are mapped
to the beginning of the memory segment

case 1) p_memsz > p_filesz,
the extra bytes are defined to hold the value 0 and
to follow the segment’s initialized area
case 2) p_memsz < p_filesz : not possible

loadable segment entries in the program header table
appear in ascending order, sorted on the p_vaddr member.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-83432/index.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 32 / 52



p_type = PT_DYNAMIC segment entry

specifies dynamic linking information

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-83432/index.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 33 / 52



p_type = PT_INTERNP segment entry

specifies the location and size
of a null-terminated path name to invoke as an interpreter
this segment type is mandatory for dynamic executable files and
can occur in shared objects.
but cannot occur more than once in a file.
this type, if present,
it must precede any loadable segment entry.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-83432/index.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 34 / 52



Sections and segments (1)

section: tell the linker if a section is either:

raw data to be loaded into memory,
e.g. .data, .text, etc, or
formatted meta data about other sections,
that will be used by the linker, but disappear at runtime
e.g. .symtab, .srttab, .rela.text

segment: tells the operating system:

where should a segment be loaded into virtual memory
what permissions the segments have (read, write, execute).

https://cirosantilli.com/elf-hello-world
https://stackoverflow.com/questions/14361248/whats-the-difference-of-section-and-segment-in-elf-file-format

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 35 / 52



Sections and segments (2)

ELF files are composed of sections and segments

sections gather all needed information
to link a given object file
and build an executable,

while Program Headers split the executable
into segments with different attributes,
which will eventually be loaded into memory.

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 36 / 52



Sections and segments (3)

segments can be viewed as
a tool to help the linux loader,
as they group sections by attributes into single segments
for more efficient loading process of the executable,
instead of loading each individual section into memory.

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 37 / 52



Sections and segments (4)

segments’ offsets and virtual addresses must be
congruent modulo the page size

their p_align field must be a multiple of the system page size

The reason for this alignment is to prevent
the mapping of two different segments
within a single memory page.

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 38 / 52



Sections and segments (5)

this is due to the fact that different segments
usually have different access attributes,

these cannot be enforced
if two segments are mapped within the same memory page.

therefore, the default segment alignment
for PT_LOAD segments is usually a system page size

The value of this alignment will vary in different architecture

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 39 / 52



Memory-mapped I/O (1)

On modern operating systems, it is possible
to mmap a file to a region of memory
then, the file can be accessed just like an array

This is more efficient than read or write,
as only the regions of the file
that a program actually accesses are loaded.

https://www.gnu.org/software/libc/manual/html_node/Memory_002dmapped-I_002fO.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 40 / 52



Memory-mapped I/O (2)

accesses to not-yet-loaded parts of the mmapped region
are handled in the same way as swapped out pages.

since mmapped pages can be stored back to their file
when physical memory is low,
it is possible to mmap files orders of magnitude
larger than both the physical memory and swap space

https://www.gnu.org/software/libc/manual/html_node/Memory_002dmapped-I_002fO.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 41 / 52



Memory-mapped I/O (3)

The only limit is address space.

the theoretical limit is 4GB on a 32-bit machine -

the actual limit will be smaller
since some areas will be reserved for other purposes.

If the LFS (Large File Storage) interface is used

the file size on 32-bit systems is not limited to 2GB
offsets are signed which reduces the addressable area
of 4GB by half
the full 64-bit are available.

https://www.gnu.org/software/libc/manual/html_node/Memory_002dmapped-I_002fO.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 42 / 52



Memory-mapped I/O (4)

mmap is a POSIX-compliant Unix system call
that maps files or devices into memory.

a method of memory-mapped file I/O
implements demand paging

file contents are not read from disk directly
and initially do not use physical RAM at all
the actual reads from disk are
performed in a lazy manner,
after a specific location is accessed.

https://en.wikipedia.org/wiki/Mmap

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 43 / 52



Memory-mapped I/O (5)

after the memory is no longer needed,
it is important to munmap the pointers to it.
protection information can be managed using mprotect

special treatment can be enforced using madvise

https://en.wikipedia.org/wiki/Mmap

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 44 / 52



Memory-mapped I/O (6)

demand paging is a method of virtual memory management
(as opposed to anticipatory paging)

the os copies a disk page into physical memory
only if an attempt is made to access it
and that page is not already in memory (page fault)

https://en.wikipedia.org/wiki/Demand_paging

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 45 / 52



Memory-mapped I/O (7)

it follows that a process begins execution
with none of its pages in physical memory,
and many page faults will occur
until most of a process’s working set of pages
are located in physical memory.
this is an example of a lazy loading technique.

https://en.wikipedia.org/wiki/Demand_paging

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 46 / 52



Memory-mapped I/O (8)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

mmap() creates a new mapping
in the virtual address space of the calling process
the starting address for the new mapping is specified in addr

the length argument specifies
the length of the mapping
(which must be greater than 0).

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 47 / 52



Memory-mapped I/O (9)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

If addr is NULL, then the kernel chooses
the (page-aligned) address
at which to create the mapping;
this is the most portable method of creating a new mapping.
If addr is not NULL, then the kernel takes it
as a hint about where to place the mapping;

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 48 / 52



Memory-mapped I/O (10)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

on Linux, the kernel will pick a nearby page boundary
but always above or equal to the value specified
by /proc/sys/vm/mmap_min_addr
and attempt to create the mapping there.
If another mapping already exists there,
the kernel picks a new address
that may or may not depend on the hint
The address of the new mapping is returned
as the result of the call.

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 49 / 52



Memory-mapped I/O (11)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

The contents of a file mapping
(as opposed to an anonymous mapping),
are initialized using length bytes
starting at offset offset in the file (or other object)
referred to by the file descriptor fd

offset must be a multiple of the page size
as returned by sysconf(_SC_PAGE_SIZE).

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 50 / 52



Memory-mapped I/O (12)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

After the mmap() call has returned,
the file descriptor, fd, can be closed immediately
without invalidating the mapping.

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 51 / 52



Memory-mapped I/O (13)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

The prot argument describes
the desired memory protection of the mapping
and must not conflict with the open mode of the file
It is either PROT_NONE or the bitwise OR of
one or more of the following flags:

PROT_EXEC Pages may be executed.
PROT_READ Pages may be read.
PROT_WRITE Pages may be written.
PROT_NONE Pages may not be accessed.

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7C Executing Background - ELF Study 1999 2020-12-21 Mon 52 / 52


	Based on
	Executing dynamic executables
	Entry point
	Execution Sequence

	Memory mapped I/O
	Memory mapped I/O


