
ELF1 7B ELF Sections for Relocation - ELF Study 1999

Young W. Lim

2020-05-11 Mon

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 1 / 60

Outline

1 Based on

2 ELF sections for relocation
TOC
sections for global and static variables
.bss and .data sections
sections for relocations
.dynamic section

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 2 / 60

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 3 / 60

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 4 / 60

TOC: ELF special sections

Sections for global and static variables
.bss and .data sections
Sections for relocations
.dynamic section

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 5 / 60

TOC: Sections for global and static variables

static and automatic variables
initialization
storage locations
default uninitialized value

universal zero initializer
initialized and uninitialized static variables

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 6 / 60

static and automatic variables - initialization

static variables

initialized at compile time,
since their address is known and fixed.
initialization to zero does not incur a run time cost

automatic variables

initialized at run time
incurs run time cost
each time the function is called
different addresses for each different call
if you do need that initialization, then request it.

https://stackoverflow.com/questions/14049777/why-are-global-variables-always-initialized-to-0-but-not-local-variables

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 7 / 60

static and automatic variables - storage locations

static variables are stored (either global or local)

in the .data section when initialized
in the .bss section when uninitialized
a fixed memory location is allocated at compile time.
thus, have ’0’ as their default values.

auto variables are stored

on the stack, not a fixed memory location
stack memory is allocated at run time
thus, have their default value as garbage

https://stackoverflow.com/questions/14049777/why-are-global-variables-always-initialized-to-0-but-not-local-variables

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 8 / 60

static and automatic variables - default uninitialized value

an object with automatic storage duration
uninitialized value is indeterminate
an object that has static storage duration
defautt uninitialized values:

if it has pointer type, a null pointer;
if it has arithmetic type, (signed or unsigned) zero;
apply the above two rules to the belows

if it is an aggregate, every member is initialized
if it is a union, the first named member is initialized

https://stackoverflow.com/questions/13251083/the-initialization-of-static-variables-in-c

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 9 / 60

universal zero initializer

the universal zero initializer

initializes everything in an object to 0,
whether it’s static or not
sometype var = {0};
someothertype var[SOMESIZE] = {0};
anytype var[SIZE1][SIZE2][SIZE3] = {0};

https://stackoverflow.com/questions/13251083/the-initialization-of-static-variables-in-cP

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 10 / 60

initialized and uninitialized static variables

global static / local static variables / arrays

initialized static variables

given value from code at compile time
usually stored in .data
though this is compiler specific

uninitialized static variables

initialized at run time
stored into .bss
though again this is compiler specific

https://stackoverflow.com/questions/13251083/the-initialization-of-static-variables-in-c

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 11 / 60

TOC: .bss and .data sections (1)

.bss
(1) to be intialized to zero
(2) no zeros in the file
(3) PROGBITS vs NOBITS
(4) unintilialized global - COMMON
(5) global static and local static variables
(6) -fno-common
(7) -fno-common error messages
.data

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 12 / 60

TOC: .bss and .data sections (2)

.rodata

.data.rel.ro
(1) after relocation
(2) relo
(3) initialized global variables
(4) dynamic relocation

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 13 / 60

.bss (1) to be initialized to zero

The .bss section is guaranteed to be all zeros
when the program is loaded into memory.

the .bss section can have global data
uninitialized
initialized to zero

static int g_myGlobal = 0; // <--- in .bss section

https://stackoverflow.com/questions/16557677/difference-between-data-section-and-the-bss-section-in-c

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 14 / 60

.bss (2) no zeros in the file

the .bss section data are not included in the ELF file on disk

there isn’t a whole region of zeros
in the file for the .bss section

instead, the loader knows from the section headers
how much to allocate for the .bss section,
and simply zero it out before transfer control

https://stackoverflow.com/questions/16557677/difference-between-data-section-and-the-bss-section-in-c

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 15 / 60

.bss (3) PROGBITS vs NOBITS

the readelf -S section headers output:
[3] .data PROGBITS 00000000 000110 000000 00 WA 0 0 4
[4] .bss NOBITS 00000000 000110 000000 00 WA 0 0 4

.data is marked as PROGBITS

there are "bits" of program data in the ELF file
that the loader needs to read out into memory

.bss is marked NOBITS

there’s nothing in the file
that needs to be read into memory as part of the load

https://stackoverflow.com/questions/16557677/difference-between-data-section-and-the-bss-section-in-c

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 16 / 60

.bss (4) uninitialized global - COMMON

uninitialized global data (block started by symbol)
depending on the compilers, uninitialized global variables
could be stored in a nameness section called COMMON
(named after Fortran 77’s "common blocks")

int globalVar;
static int globalStaticVar;
void dummy() {

static int localStaticVar;
}

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 17 / 60

.bss (5) global static and local static variables

compile with gcc -c, then on x86_64,
the resulting object file has the following structure:
only the uninitialized file-scope static variables
and uninitialized local-scope static variables
(globalStaticVar or localStaticVar)
are in the .bss section
uninitialized file-scope global variables in COMMON
$ objdump -t foo.o

SYMBOL TABLE:
....

0000000000000000 l O .bss 0000000000000004 globalStaticVar
0000000000000004 l O .bss 0000000000000004 localStaticVar.1619
....

0000000000000004 O *COM* 0000000000000004 globalVar

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 18 / 60

.bss (6) -fno-common

If one wants globalVar to reside in the .bss section,
use the -fno-common (encouraged)
compile with gcc -c, then on x86_64,
no error / no warning messages without -fno-common
$ cat foo.c
int globalVar; // int
$ cat bar.c
double globalVar; // double
int main(){}
$ gcc foo.c bar.c

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 19 / 60

.bss (7) -fno-common error messages

there is no error message about
redefinition of the same symbol in both source files
(notice we did not use the extern keyword here),
there is no complaint about
their different data types and sizes either.

However, if one uses -fno-common, the compiler will complain:
/tmp/ccM71JR7.o:(.bss+0x0): multiple definition of ‘globalVar’
/tmp/ccIbS5MO.o:(.bss+0x0): first defined here
ld: Warning: size of symbol ‘globalVar’ changed from 8 in /tmp/ccIbS5MO.o to 4 in /tmp/ccM71JR7.o

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 20 / 60

.data

Initialized data.

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 21 / 60

.rodata

Read-only data.

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 22 / 60

.data.rel.ro (1) after relocation

Similar to .data section, but this section
should be made Read-Only
after relocation is done.

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 23 / 60

.data.rel.ro (2) relro

gcc (the GNU linker), and
glibc (the dynamic linker) cooperate
to implement read-only relocations, or relro.

a part of an executable or shared library
is designated as being read-only
after dynamic relocations have been applied.

https://stackoverflow.com/questions/7029734/what-is-the-data-rel-ro-used-for

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 24 / 60

.data.rel.ro (3) initialized gloabl variables

used for read-only global variables
which are initialized by

the address of a function or
a different global variable
these themselves also require relocations

https://stackoverflow.com/questions/7029734/what-is-the-data-rel-ro-used-for

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 25 / 60

.data.rel.ro (4) dynamic relocation

Because such an initialized global variable requires
a runtime initialization in the form of a dynamic relocation,
it can not be simply placed in a read-only segment.

it will be declared as constants (read-only)
after the initialization (dynamic relocation),
and will not be changed by the program

therefore the dynamic linker can mark it as read-only
after the dynamic relocation has been applied.

https://stackoverflow.com/questions/7029734/what-is-the-data-rel-ro-used-for

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 26 / 60

TOC: sections for relocations (1)

sectons in relocatable object files
relocation table sections
multiple relocation sections but a single table
.rel.XXX, .rela.XXX
.rela.text, .rel.text
.rel.text and .rel.data sections
.rel.text section
.rel.data section

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 27 / 60

TOC: sections for relocations (2)

.rel.dyn

rela.dyn

rela.plt

.got

.got.plt

.plt

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 28 / 60

sections in relocatable object files (1)

.text - the machine code of the compiled program.

.rodata - read-only data, such as the format strings
in printf statements.

.data - initialized global variables.

.bss - uninitialized global variables.
- BSS stands for Block Storage Start
- occupies no space in the object file
merely a placer holder.

.symtab - a symbol table with information about
functions and global variables
defined and referenced in the program.
- no entries for local variables
which are maintained on the stack.

https://www.linuxjournal.com/article/6463

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 29 / 60

sections in relocatable object files (2)

.rel.text - a list of locations in the .text section
that need to be modified when the linker
combines this object file with other object

.rel.data - relocation information for global variables
referenced but not defined
in the current module.

.debug - a debugging symbol table with entries
for local and global variables.
- present only if compiled with -g

.line - a mapping between line numbers in the C
source and machine instructions in the .text
- required by debugger programs.

.strtab -a string table for the symbol tables
#ERROR

https://www.linuxjournal.com/article/6463
Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 30 / 60

relocation table sections (1)

old current listed relocs
.rel.bss .rel.dyn contains all the

R_386_COPY relocs
.rel.data .rel.dyn contains all the R_386_32

and R_386_RELATIVE relocs
.rel.got .rel.dyn contains all the

R_386_GLOB_DAT relocs
.rel.plt .rel.plt contains all the

R_386_JUMP_SLOT relocs

R_386_JUMP_SLOT relocs modify the first half of the GOT elements
R_386_GLOB_DAT relocs modify the second half of the GOT elements

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 31 / 60

relocation table sections (2)

rel.text compile time / static relocation table
rela.text
rel.dyn run time / dynamic relocation table
rela.dyn
rel.plt run time / dynamic relocation table
rela.plt

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 32 / 60

multiple relocation sections but a single table

an object file can have multiple relocation sections
when creating the relocation table
for an executable or shared object file,
the link-editor catenates those sections
to form a single relocation table.

Although the sections may remain independent in the object file,
the runtime linker sees a single table.
When the runtime linker creates
the process image for an executable file or
adds a shared object to the process image,
it reads the relocation table and performs the associated actions.

https://www3.physnet.uni-hamburg.de/physnet/Tru64-Unix/HTML/APS31DTE/DOCU_002.HTM#reldyn_section

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 33 / 60

.rel.XXX, .rela.XXX

Compile-time/Static relocation table for other sections.
For example, .rela.init_array is the relocation table
for .init_array section.
Whether to use .rel or .rela is platform-dependent.

for x86_32, .rel
for x86_64, .rela

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 34 / 60

.rel.text, .rela.text

1 For programs compiled with -c option,
this section provides information to the link editor ld
where and how to patch executable code in .text section.

1 The difference between .rel.text and .rela.text

entries in .rel.text does not have addend member
instead, the addend is taken from the memory location
described by offset member.
compare struct Elf64_Rel with struct Elf64_Rela
in /usr/include/elf.h

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 35 / 60

.rel.text and .rel.data sections

.rel.text : relocation information for .text section

a list of locations in the .text section
that will need to be modified
when the linker combines this object file with others

.rel.data : relocation information for .data section

a list of locations in the .data section
that will need to be modified
when the linker combines this object file with others

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 36 / 60

.rel.text section

relocation information for .text section

modify any instruction in the code section that

calls an external function
references a global variable

do not modify any instructions in the code section that

calls local functions

executable files do not include relocation information
unless the user explicitly instructs the linker

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 37 / 60

.rel.data section

relocation information for .data section

relocation information for any global variable
that are referenced or defined by the data section

modify the intialized values of any global variable
when the initialized values are

the address of a global variable (&cPub)
externally defined function (&fPub)

typedef struct { char* p; char (*f)(int); } _st;
_st a[] = { {&cLocal, fLocal}, {&cPub, fPub} }

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 38 / 60

.rel.dyn (1) relocation after loading

The dynamic relocation section describes
all locations within the object that must be adjusted
if the object is loaded at an address
other than its linked base address.

Only one dynamic relocation section is used
to resolve addresses in data items,
and it must be called .rel.dyn

https://www3.physnet.uni-hamburg.de/physnet/Tru64-Unix/HTML/APS31DTE/DOCU_002.HTM#reldyn_section

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 39 / 60

.rel.dyn (2) normal relocation secton

shared (dynamic) executable files can contain
normal relocation sections (.rel.text)
in addition to a dynamic relocation section (.rel.dyn)

the normal relocation sections (.rel.text)
may contain resolutions for any absolute values
in the main program.

the dynamic linker does not resolve these or
relocate the main program.

https://www3.physnet.uni-hamburg.de/physnet/Tru64-Unix/HTML/APS31DTE/DOCU_002.HTM#reldyn_section

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 40 / 60

.rel.dyn (3) an array of elements

The dynamic relocation section is
an array of entries of the following type Elf32_Rel
typedef struct {

Elf32_Addr r_offset;
Elf32_Word r_info;

} Elf32_Rel;

r_offset Identifies
the location within the object to be adjusted.
r_info Identifies
the relocation type and the index
of the symbol that is referenced.
The macros ELF32_R_SYM and ELF32_R_TYPE
access the individual attributes.

https://www3.physnet.uni-hamburg.de/physnet/Tru64-Unix/HTML/APS31DTE/DOCU_002.HTM#reldyn_section

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 41 / 60

.rel.dyn (4) attributes of relocation table

The entries of the dynamic relocation section are
ordered by symbol index value.
The DT_REL and DT_RELSZ entries
of the .dynamic section
describe the attributes of
the dynamic relocation section
the relocation table rel.dyn

DT_REL : the address of a relocation table
DT_RELSZ : the size of a relocation table

https://www3.physnet.uni-hamburg.de/physnet/Tru64-Unix/HTML/APS31DTE/DOCU_002.HTM#reldyn_section

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 42 / 60

.rela.dyn

For dynamic binaries, .rela.dyn relocation table holds
information of variables which must be relocated upon loading
Each entry in this table is a struct Elf64_Rela
(see /usr/include/elf.h) which has only three members:

offset : the variable’s virtual memory address
which holds the "patched" value during the relocation process
[usually position-independent]
info : index into .dynsym section and relocation type
addend

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 43 / 60

.rela.plt

.rela.plt relocation table is similar
to the one in .rela.dyn section;

.rela.plt is for functions

.rela.dyn is for variables

The relocation type of entries in this table is
R_386_JMP_SLOT or R_X86_64_JUMP_SLOT and
the offset refers to memory addresses
which are inside .got.plt section.
.rela.plt table holds information
to relocate entries in .got.plt section.

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 44 / 60

.got

For dynamic binaries,
this Global Offset Table holds the addresses of variables
which are relocated upon loading.

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 45 / 60

.got.plt

For dynamic binaries,
this Global Offset Table holds
the addresses of functions in dynamic libraries.
They are used by trampoline code in .plt section.
If .got.plt section is present,
it contains at least three entries,
which have special meanings.

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 46 / 60

.plt

For dynamic binaries,
this Procedure Linkage Table holds
the trampoline/linkage code.

https://www.cs.stevens.edu/~jschauma/631A/elf.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 47 / 60

TOC: .dynamic section

.dynamic section

.dynamic section - an array of the dynamic structures
Program header table element of the type PT_DYNAMIC

Array structure of the .dynamic section
.dynamic section - runtime linker
.dynamic section - dynamic linker’s behavior
Loading the necessary shared libraries
link_map structure
Linking external functions
Searching Link_map structure

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 48 / 60

.dynamic section

the dynamic linker uses .dynamic section
to bind procedure addresses
such as the symbol table and
relocation information

Computer Architecture : A Programmer’s Perspective

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 49 / 60

.dynamic section - an array of the dynamic structures

if an object file participates in dynamic linking,
its program header table will have
an element of type PT_DYNAMIC.

this segment contains the .dynamic section.

is labeled by a special symbol, _DYNAMIC
contains an array of the dynamic structures

https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-42444.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 50 / 60

Program header table element of the type PT_DYNAMIC

If an bject file participates in dynamic linking,
its program header table will have
an element of type PT_DYNAMIC

program header table structure
typedef struct {

Elf32_Word p_type; // the kind of segment ... PT_DYNAMIC
Elf32_Off p_offset; // from the beginning of the file
Elf32_Addr p_vaddr; // virtual address
Elf32_Addr p_paddr; // physical address
Elf32_Word p_filesz; // size of the file image of the segment
Elf32_Word p_memsz; // size of the memory image of the segment
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblk/index.html#chapter6-42444

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 51 / 60

Array structure of the .dynamic section

the segment whose program header table type is PT_DYNAMIC
contains the .dynamic section

has the label _DYNAMIC
contains an array of the following structure

typedef struct {
Elf32_Sword d_tag;

union {
Elf32_Word d_val;
Elf32_Addr d_ptr;
Elf32_Off d_off;

} d_un;
} Elf32_Dyn;

d_tag controls the interpretation of d_un

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblk/index.html#chapter6-42444

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 52 / 60

DT_RELA and DT_REL

the address of a relocation table (rel.dyn)
This element requires
the DT_RELASZ and DT_RELAENT elements also be present.
When relocation is mandatory for a file,
either DT_RELA or DT_REL can occur.

https://www3.physnet.uni-hamburg.de/physnet/Tru64-Unix/HTML/APS31DTE/DOCU_002.HTM#reldyn_section

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 53 / 60

DT_RELASZ and DT_RELEAENT

DT_RELASZ
Contains the size in bytes of the DT_RELA relocation table.
(Not used by the default system linker and loader.)
DT_RELAENT
Contains the size in bytes of a DT_RELA relocation table entry.
(Not used by the default system linker and loader.)

https://www3.physnet.uni-hamburg.de/physnet/Tru64-Unix/HTML/APS31DTE/DOCU_002.HTM#reldyn_section

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 54 / 60

.dynamic section - runtime linker

the runtime linker (dynamic linker),
can locate its own dynamic structure
through _DYNAMIC symbol, even when
relocation entries have not yet been processed

the runtime linker must initialize itself
without relying on other programs
to relocate its memory image.

https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-74186.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 55 / 60

.dynamic section - dynamic linkers’s behavior

.dynamic section essentially holds
a number of arguments
that inform on and influence
parts of the dynamic linker’s behavior

as a component of the run-time, the dynamic linker does
many other things besides just relocate functions,
it also executes other house keeping functions
like INIT and FINI
see elf/elf.h

http://blog.k3170makan.com/2018/11/introduction-to-elf-format-part-vii.html

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 56 / 60

Loading the necessary shared libraries

When the dynamic linker is mapped to the memory,
it first handles its own relocations.
Then, it looks into the .dynamic section and
searches for DT_NEEDED tags
to locate the different shared libraries to be loaded.
It then brings the shared library in memory,
looks into its .dynamic section and
adds the library’s symbol table to a chain of symbol tables it maintains.

It also creates an link_map entry for every shared library
the first entry in link_map is of the executable binary itself.

https://gist.github.com/DhavalKapil/2243db1b732b211d0c16fd5d9140ab0b

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 57 / 60

link_map structure

struct link_map
{

ElfW(Addr) l_addr;
char * l_name;
ElfW(Dyn) * l_ld;
struct link_map * l_next, *l_prev;
ElfW(Dyn) * l_info[DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGNUM +

DT_EXTRANUM + DT_VALNUM + DT_ADDRNUM];
};

l_addr base address shared object is loaded at
l_name absolute file name object was found in
l_ld dynamic section of the shared object
l_next, l_prev chain of loaded objects
l_info[...] holds pointers to symbol table (l_info[DT_SYMTAB])
and relocation table (l_info[DT_JMPREL])

https://gist.github.com/DhavalKapil/2243db1b732b211d0c16fd5d9140ab0b

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 58 / 60

Linking external functions

During the process of linking external functions,
a call is made to _dl_runtime_resolve with parameters:

the link_map struct and
the index into the relocation table for that function.

The relocation entry gives

the index in the symbol table for that function and also
the address in GOT to be patched.

The symbol is then searched in shared libraries
using the link_map struct.

https://gist.github.com/DhavalKapil/2243db1b732b211d0c16fd5d9140ab0b

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 59 / 60

Searching link_map structure

The search involves the following steps:

Generating a hash of the symbol name to be searched for.
Lookup the symbol table entry using that index.
Lookup the name of that symbol in string table and compare.

If found, the symbol’s address is added
to the corresponding shared library’s base address

https://gist.github.com/DhavalKapil/2243db1b732b211d0c16fd5d9140ab0b

Young W. Lim ELF1 7B ELF Sections for Relocation - ELF Study 19992020-05-11 Mon 60 / 60

	Based on
	ELF sections for relocation
	TOC
	sections for global and static variables
	.bss and .data sections
	sections for relocations
	.dynamic section

