
ELF1 7B Loading Background - ELF Study 1999

Young W. Lim

2020-11-03 Tue

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 1 / 49

Outline

1 Based on

2 Dynamic loading
Dynamic loading

3 Dynamic linking
Dynamic linking

4 Cases of loading and linking
Possible Cases of loading and linking

5 Load addresses
TOC
Memory Map
Library load addresses

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 2 / 49

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 3 / 49

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 4 / 49

TOC: Dynamic loading

dynamic loading

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 5 / 49

Dynamic loading (1)

suppose our program that is to be executed
consist of various modules.
not all the modules are loaded into the memory at once
the main module is loaded first and then starts to execute
some other modules are loaded only when they are required
until loading them, the execution is stopped

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 6 / 49

Dynamic loading (2)

Assume a linker is called to link necessary modules
into an executable module.
In dynamic loading, after the linker is called,
only main module is loaded into memory.
During execution, if main module needs another module
which is already linked in executable module,
then calling module calls relocatable linking loader
to load the called module into apporiate location
in the processes logical adress space.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 7 / 49

Dynamic loading (3)

loading the dependent library or routine
on-demand or
at some time at run time after load time
(the time at which the main program executable is loaded).
this is contrast to loading all dependencies
with the main program.
at load-time together
The loading process completes
when the library has been successfully loaded into main memory.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 8 / 49

Dynamic loading (4)

loading the library (or any other binary executable)
into the memory during load or run time.
dynamic loading can be imagined to be similar to plugins

an executable (main module) can actually start to run
before the dynamic loading happens

The dynamic loading example can be created using dlopen()
of Dynamically Loaded (DL) libraries

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking#

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 9 / 49

Dynamic loading (5)

Dynamic loading :
system library or other routine
is loaded during run time and
it is not supported by OS

when your program runs, it’s the programmer’s job
to open that library.
such programs are usually linked with libdl,
which provides the ability to open a shared library.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking#

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 10 / 49

Dynamic loading (6)

dynamic loading allows a computer program
to start up without loading these libraries,
to discover and load available libraries after starting

a computer program can, at run time,
load a library or other binary into memory,
retrieve the addresses of library functions and variables
execute those functions or access those variables, and
unload the library from memory.

the 3 mechanisms by which
dynamic loading
static linking
dynamic linking.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking#

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 11 / 49

Dynamic loading (7)

With dynamic loading a module is not loaded until it is called
all modules are kept on a disk in a relocatable load format.
the main program is loaded into memory and is executed

when a module needs to call another module,
the calling module first checks to see whether it has been loaded.

if not , the relocatable linking loader is called
to load the desired module into memory and
update program’s address tables to reflect this change.
then control is passed to newly loaded module

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking#

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 12 / 49

Dynamic loading (8)

an unused module is never loaded .
useful when the code is large

dynamic loading does not need special support from OS
it is the responsibility of a programmer

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking#

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 13 / 49

TOC: Dynamic linking

dynamic linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 14 / 49

Dynamic linking (1)

suppose a program has some function calls
whose definition is located in some system library
the header file only consists of
the declarations of functions and not definitions
during execution, if the function gets called

the system library is loaded into main memory
link the function call in the program
with the function definition in the system library.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 15 / 49

Dynamic linking (2)

when a module needs to be called,
the called module is loaded into memory and
a link between the calling module and called module
is established by the stub (a piece of code that is linked)
in static linking time of the program.

stub is a piece of code that is linked
a temporary small function placed by the compiler
makes an indirect call to a module function

dynamic Linking mostly used with
shared libraries which different users may use.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 16 / 49

Dynamic linking (3)

When the program makes the first call to an imported function
whose library may or may not have been loaded yet.

Initially, a stub gets called instead of the imported function
the stub calls into the OS.
if the library is currently not loaded,
it gets loaded (this step is called dynamic loading).
then, the stub is modified so that it calls
the imported function directly for subsequent calls
(this step is called dynamic linking)

The component of the OS that performs both steps is called
the dynamic linker or the dynamic linking loader.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 17 / 49

Dynamic linking (4)

dynamic linking is done during load or run time
and not when the executable is created (compile time)
the static linker does minimal work
when creating the executable
(generating stub functions)
the dynamic linker has to load the libraries
so it is called linking loader.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 18 / 49

Dynamic linking (5)

system library or other routine is linked
during run time and by the support of OS
when an executable is compiled
the required shared libraries must be specified
otherwise it won’t even compile.
When your program starts
it’s the system’s job to open these libraries
the required libraries can be listed using the ldd command.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 19 / 49

Dynamic linking (6)

Dynamic linker is a run time program that loads and binds
all of the dynamic dependencies of a program
before starting to execute that program.

find what dynamic libraries a program requires,
what libraries those libraries require . . .
(dynamic dependencies)
load all those libraries and
make all references to the functions point to the right places

the "hello world” program requires the standar C library
the dynamic linker will load the standard C library
before loading the hello world program and
will make any calls to printf() go to the right place

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 20 / 49

Dynamic linking (7)

both dynamic loading and dynamic linking
happen at run time,
and load whatever they need into memory.
The key difference is that

dynamic loading checks
if the routine was loaded by the loader
dynamic linking checks
if the routine is in the memory.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 21 / 49

Dynamic linking (8)

for dynamic linking,
there is only one copy of the library code in the memory,

this may be not true for dynamic loading
That’s why dynamic linking needs OS support to check
the memory of other processes.

this feature is very important for language libraries,
which are shared by many programs.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 22 / 49

Dynamic loading and dynamic linking

dynamic loading refers to
mapping (or less often copying)
an executable or library into a process’s memory
after the executable has been started.

dynamic linking refers to resolving symbols
associating their names with addresses or offsets
after compile time

the reason it’s hard to make a distinction is that
the two are often done together without recognizing

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamic-loading-and-dynamic-linking/answer/Jeff-Darcy

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 23 / 49

(1) Dynamic loading, Static linking

The executable has an address/offset table
generated at compile time,
but the actual code/data aren’t loaded
into memory at process start.
old-fashioned overlay systems.
some current embedded systems may work in this way
to give the programmer control over memory use
also to avoid the linking overhead at runtime

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamic-loading-and-dynamic-linking/answer/Jeff-Darcy

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 24 / 49

(2) Static loading, Dynamic linking

when dynamic libraries specified at compile time
an executable contains a reference
to the dynamic/shared library,
but the symbol table is missing or incomplete.
both loading and linking occur at process start,
which is considered as

dynamic for linking
static for loading.

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamic-loading-and-dynamic-linking/answer/Jeff-Darcy

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 25 / 49

(3) Dynamic loading, Dynamic linking

when you call dlopen
the object file is loaded dynamically
under program control (i.e. after process start)
symbols in the calling program and in the library
are resolved based on the process’s particular memory layout
at that time.

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamic-loading-and-dynamic-linking/answer/Jeff-Darcy

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 26 / 49

(4) Static loading, Dtatic linking

everything is resolved at compile time.
everything is loaded into memory immediately
at process start
no further resolution (linking)
does not require to load a single file
but no known implementation for multiple file loading
without dynamic linking

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamic-loading-and-dynamic-linking/answer/Jeff-Darcy

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 27 / 49

TOC: Load addreses

Memory Map
Library load addreses

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 28 / 49

TOC: Memory Map

Load address
i386 Load addreses 1999 (increasing from the top)
i386 Load addreses 1999 (increasing from the bottom)
Linux run-time memory image
mmpa
sys_brk

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 29 / 49

Load address

in a typical Linux system,
the addresses 0 - 3fff_ffff (4 GB)
are available for the user program space.

exectuable binary files include header information
that indicates a load address

libraries, because they are position-independent,
do not need a load address, but contain a 0 in this field.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 30 / 49

i386 load addresses 1999 (increasing from the top)

Start Len Usage
0000_0000 4k zero page
0000_1000 128M not used
0800_0000 896M app code/data space

followed by small-malloc() space
4000_0000 1G mmap space

library load space
large-malloc() space

8000_0000 1G stack space
working back from BFFF.FFE0

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 31 / 49

i386 load addresses 1999 (increasing from the bottom)

Start Len Usage
stack space

8000_0000 1G working back from BFFF.FFE0
memory mapped region
for shared libraries

4000_0000 1G large-malloc() space
small-malloc() space

0800_0000 896M app data / code space
0000_1000 128M not used
0000_0000 4k zero page

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 32 / 49

Linux Run-time Memory Image (increasing from the bottom)

memory invisible
0xc000_0000 Kernel virtual memory to the user code

User stack
created at run time ← %esp stack ptr
↓ ↓ ↓
↑ ↑ ↑
memory mapped region

0x4000_0000 for shared libraries

↑ ↑ ↑
Run time heap ← brk
created by malloc
R/W segment
(.data, .bss)
RO segment

0x0804_8000 (.init, .text, .rodata)

0x0000_0000 Unused
Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 33 / 49

mmap (1)

mmap (2) is a POSIX-compliant Unix system call that
maps files or devices into memory.
a method of memory-mapped file I/O
implements demand paging,

file contents are not read from disk directly
initially do not use physical RAM at all.

The actual reads from disk are performed in a lazy manner,
after a specific location is accessed.

https://en.wikipedia.org/wiki/Mmap

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 34 / 49

mmap (2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

int munmap(void *addr, size_t length);

creates a new mapping in the virtual address space of the
calling process
the starting address for the new mapping is specified in addr
the length argument specifies the length of the mapping
the contents of a file mapping are initialized
using length bytes starting at offset offset in the file
(or other object) referred to by the file descriptor fd

http://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 35 / 49

sys_brk (1)

the sys_brk system call is provided by the kernel,
to allocate memory without the need of moving it later
allocates memory right behind the application image in the memory
allows you to set the highest available address in the data section.

takes one parameter (the highest memory address)

https://www.tutorialspoint.com/assembly_programming/assembly_memory_management.htm

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 36 / 49

sys_brk (2)

#include <unistd.h>

int brk(void *addr);
void *sbrk(intptr_t increment);

brk() and sbrk() change the location of the program break, which
defines the end of the process’s data segment
the program break is the first location
after the end of the uninitialized data segment
increasing / decreasing the program break has the effect of
allocating / deallocating memory to the process;
sbrk() increments the program’s data space by increment bytes.

http://man7.org/linux/man-pages/man2/brk.2.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 37 / 49

TOC: Library load addresses

Library load addresses
Shared library address
Dyn loader names
load address example

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 38 / 49

Library load addresses (1)

The kernel has a preferred location
for mmap data objects at 0x4000_0000.
since the shared libraries are loaded by mmap, they end up here.

large mallocs are realized by creating a mmap, so
these end up in the pool at 0x4000_0000.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 39 / 49

Library load addresses (2)

the library GLIBC that is mostly used for malloc
handles small mallocs by calling sys_brk(),
which extends the data area after the app,
at 0x0800_0000+sizeof(app).

As the mmap pool grows upward, the stack grows downward.
between them, they share 2G bytes.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 40 / 49

Shared library address

The shared library design usually loads app first,
then the loader notices that it need support
and loads the dynamic loader library (using .interp section)
(usually /lib/ld-linux.so.2)
at 0x4000_0000
other libraries are loaded after ld.so.1
see which and where libraries will be loaded by ldd
ldd foo_app

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 41 / 49

Dynamic loader names

dynamic loader
dynamic linker
runtime linker
interpreter

ld-linux.so.2

ld-linux.so

ld.so

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 42 / 49

load address example (1)

consider a diagnostic case where the app (foo_app) is invoked by
/lib/ld-linux.so.2 foo_app foo_arg

the ld-linux.so.2 is loaded as an app
since it was built as a library, it tries to load at 0
[In ArmLinux, this is forbidden,
so the kernel pushes it up to 0x1000

Once ld-linux.so.2 is loaded, it reads it argv[1] and
loads the foo_app at its preferred location (0x0800.0000)

other libraries are loaded up a the mmap area.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 43 / 49

load address example (2)

So, in this case, the user memory map appears as

start Len Usage
0000_0000 128M ld-linux.so.2

followed by small-malloc() space
0800_0000 896M app code/data space
4000_0000 1G mmap space

lib space
large-malloc() space

8000_0000 1G stack space,
working backward from BFFF_FFE0

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 44 / 49

load address example (3)

Notice that the small malloc space is much smaller in this case
(128M),
but this is supposed to be for load testing and diagnostics

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 45 / 49

library built with -fPIC

the vast majority of pages are exactly the same for every process
different processes load the library at different logical addresses,
but they will point to the same physical pages
thus, the memory will be shared.
the data in RAM exactly matches what is on disk,
so it can be loaded only when needed by the page fault handler.

https://unix.stackexchange.com/questions/116327/loading-of-shared-libraries-and-ram-usage

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 46 / 49

library built without -fPIC

most pages of the library will need link edits,
and will be different
each process has separate physical pages
because they contain different data (as a result of execution)
that means they’re not shared.
the pages don’t match what is on disk
in the worst case, the entire library could be loaded and then
subsequently be swapped out to disk (in the swapfile)

https://stackoverflow.com/questions/311882/what-do-statically-linked-and-dynamically-linked-mean

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 47 / 49

shared library and re-entrant code (1)

the concept of re-entrant code, i.e.,
programs that cannotmodify themselves while running.
it is necessary to write libraries.

re-entrant code is useful for shared libraries
Some functions in a library may be reentrant, whereas
others in the same library are non-reentrant.

A library is reentrant if and only if
all of the functions in it are reentrant.

http://cs.boisestate.edu/~amit/teaching/297/notes/libraries-and-plugins-handout.pdf
https://bytes.com/topic/c/answers/528112-basic-doubt-shared-libraries

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 48 / 49

shared library and re-entrant code (2)

a shared library does not need to be reentrant
the code area of the library is shared by multiple processes
the data area of the library is copied separately for each process

reentrant codes are required when running in multi-thread

http://cs.boisestate.edu/~amit/teaching/297/notes/libraries-and-plugins-handout.pdf
https://bytes.com/topic/c/answers/528112-basic-doubt-shared-libraries

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-11-03 Tue 49 / 49

	Based on
	Dynamic loading
	Dynamic loading

	Dynamic linking
	Dynamic linking

	Cases of loading and linking
	Possible Cases of loading and linking

	Load addresses
	TOC
	Memory Map
	Library load addresses

