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Energy and Power

Instantaneous Power

p(t) = Xz(t) real signal

Energy dissipated during Average power dissipated during
(=T/2, +T/2) (=T/2, +T/2)
+T/2 1 +T/2

T 2 T _ 2
El = [ X*(t)dt Px—?f x“(t)dt
~T/2 ~T/2

The rate at which energy is dissipated

Affects the performance
of a communication system

Determines the voltage
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Energy and Power Signals (1)

Energy dissipated during Average power dissipated during

(=T/2, +T/2) (=T/2, +T/2)
+T/2 +T/2
2
= f x“(t)dt — f x°
~T/2 T 7y

Energy Signal
Nonzero but finite energy

Power Signal

Nonzero but finite power

0 < E, <+ forall time 0 < P, < +o0 forall time

+T/2 ]_

. . . +T/2 )
E, = %irPf ., XH(t) dt P, = ;iq}o?f‘m x“(t) dt
= J.:i Xz(t) dt < +ow < +o0
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Energy and Power Signals (2)

Energy Signal
Nonzero but finite energy

0 < E, < +o0 forall time

Power Signal

Nonzero but finite power

0 < P, < +o forall time

+T/2 +T/2
E, = lim [ x(t) dt P, = lim — f -, X°(t) dt
T—)+oo
= f_z x*(t)dt < +o < +o0
+T/2 T T2 4
P, = ;1_)1'20 fT/Z (t)dt E = }{)IEO o X (t) dt
. B .
= lim= > 0 = lim B-T = +x

T >+

Non-periodic signals
Deterministic signals
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T >+

Periodic signals
Random signals
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Energy and Power Spectral Densities (1)

Total Energy, Non-periodic Average power, Periodic
oo +T /2
= [ X*(t) dt _—f x*
% —T/2
Parseval's Theorem, Non-periodic Parseval's Theorem, Periodic
+ o0 — 2
= [ IX(fFdf = 2 e
= [ wif)df = [ G.(f)d
=2f, w(f)df =2[, G(f)df
Energy Spectral Density Power Spectral Density
2
w(f) = [X(f) = X fef olf —nfy)
n=—ow
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Energy and Power Spectral Densities (2)

Energy Spectral Density

Total Energy, Non-periodic

= [T w(f)df

Parseval's Theorem, Non-periodic

Power Spectral Density

Z:|C|6 _nfo

n=—ow

Average power, Periodic

+T/2

—fx

—T/2
= [ _G/(f)df
Parseval's Theorem, Periodic

Non-periodic power signal
(having infinite energy) ?
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Energy and Power Spectral Densities (3)

Power Spectral Density

G.(f) = lim X (f)f

T>x

Non-periodic power signal
(having infinite energy) 7

— No Fourier Series

%Sts+ )

N~

truncate (—

x(t) wmp x.(t)

- Fourier Transform X _.(f)

+T/2

P’ = lim L | x*(t)dt

X
T > T —-T/2

+0o0

= [ um EUL 4

— T w0

Power Spectral Density

Z:|C|6 _nfo

nN=—ow

Average power, Periodic
+T /2

—fx

= [T G.(f)df

Parseval's Theorem, Periodic
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Autocorrelation of Energy and Power Signals

Autocorrelation of an Energy Signal

R(t) = [7 x(t)x(t+7)dt

(—%D‘< T §§+oo)

Autocorrelation of a Power Signal

R,(x) = lim £ [ x|

X
T-)+oo

(t)x(t+<)dt

T/2

( 0 =T §§+oo)

Autocorrelation of a Periodic Signal

R (1) = ij;i x(t)x(t+7)dt

(—%D:S T §;+oo)

R.(t) = W(f) R.(t) = G.(f)
R.(0) = [ x*(t) dt R,(0) = [ x(t) dt
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Ensemble Average

Random Variable Random Process
mx — E{X} mx(tk) — E{X(tk)}
= [ xpy(x) dx = [ xpy(x) dx

for a given time T,

E(X’] = o, + m, R,(t; t;) = E(X(t,) X(t,)]
- f—w x*Px(x) dx - !i: fiz X1X; Px, x,(X1,X,) d X d X,
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WSS (Wide Sense Stationary)

Random Process WSS Process by ensemble average
m,(t,) = E{X(t,)] ‘ m,(t,) = E{X(t,)]
= |7 xpy(x) dx - M
for a given time [, constant for all times
R,(t, t;) = E[X(t,)X(t,)) W) Rt &) = E(X(£) X(t,)]
= fi:fiz X1 X, Px x,(Xq Xy) dXx,d X, = Rx(t1_ tz)

depends on time differences
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Ergodicity and Time Averaging

Random Process
m, (t,) = E{X(t,)] R,(t,, t,) = E{X(t;) X(t,)}

- g (x) dx = ST b () dxydx,

for a given time

WSS Process by ensemble average

m, (t,) = E{X(t,)) Rx(tl, t,) = E{X(t;) X(t,)]
= m, = R (t,—-t,) =R (1)
Ergodic Process by time average
mx(tk) = E{X(tk>} = Rx<t1, tz) = E{X(t1>X(t2)} =
+T/2 +T/2
m, = }iffi%f—?/z X(t)dt _ }iffl%f—m X(t) X(t+) dt
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Autocorrelation of Power Signals

Autocorrelation of a Random Signal

R.(t) = E{X(t) X(t + 1)}

Autocorrelation of a Power Signal

R(t) = lim — j*m

X
T-)+oo

(t)x(t+=)dt

T/2

( ooS‘cS+oo)

Autocorrelation of a Periodic Signal

R (1) = if_i/; x(t)x(t+7)dt

(—ooS T S+oo)
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Autocorrelation of Random Signals

Autocorrelation of Power Spectral Density of
a Random Signal a Random Signal
G.(f) = lim |X,(f)f
R,(t) = E{X(t) X(t +1)] x Toen T T
. 1 p+T/2
= }1120? 1 X(t) X(t+7) dt

if ergodic in the
autocorrelation function

R.(t) = R(-) G.(f) = G(-f)
R(t) = R,(0) G.(f) = 0

R.(t) © Gf) G.(f) & R.(1)

R,(0) = E{X*(t)] P.(0) = | Gx(f)df
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Ergodic Random Process

my, = E{X(t)] DC level

my normalized power in the dc component
E[X*(t)) total average normalized power (mean square value)
\/E{Xz(t)} rms value of voltage or current
2 average normalized power in the ac component
Ox Oy
m,=my =0 m oy = E(X? var = total average normalized power
= mean square value (rms”2)
Ox rms value of the ac component
my, = 0 rms value of the signal
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Single Tone Input

y(6) = h(e) % x(t) = [ h(z) x(c - 7)d

x(t) = Ae’®e’" mmmmp  h(t) wmmdp y(0)

amplitude = A

h = &
?ase y(t) _ J‘h ]Q) ]oot r)dT
requency = w

— J'h ]CD ]u)t —jot dT

Fourier Transform e’ el fh e " dr

AVAV4 \/\/ = Ae’e’" H(jo) complex number

. given  and t
AUV 4 = Aee pe

changes the amplitude and the phase of
the single tone input but not the frequency

16 Young Won Lim
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Impulse Response & Frequency Response

Fourier Transform
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Linear System

\/\/ single frequency component: | 2=
N NS

Frequency Response "

I T WAWA
H(Joo)Z_J;h(t)e’ dt \/ \/
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Transfer Function & Frequency Response

Frequency Response

H(jo) = I;h(r)e_j””dr

Laplace Transform

initial state
differential equation

Fourier Transform

steady state
frequency response
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Linear System & Random Variables (1)

R.V R.V

X(t) v—) h(t) ) Y(¢t)

mean

E[X(t)] ) h(t) ) E[¥()] = [ E[X(xt)]h(i—7)dv

correlation
E[X(t,)X(t,)] h(t)*h*(—t) E[Y(t,)Y(t,)]
Fourier Transform
WSS
S (o) H(w)H* (o) Sy(w) = [H(o) S(w)
= [T R, (v)e 7 dv = [ Ru(v)e " dx
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Linear System & Random Variables (2)

mean

E[X(t)] sl

Ergodic WSS

R.V

h(t) ) Y (t)
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Linear System & Random Variables (3)

X.(t) E— h(t) ) Y (t)

R, (t) = R, (v)*h"(-7) R,(7) = R,(t)*h(7) R, (t) = R, (7)*p(7)
Sy S.(w)H"(w) S S

can be viewed as follows

R (t) s h(¢)xh*(—¢) mmmd R, (7)

Fourier Transform

Su(0) m=p H(0)H (o) m—) S, (o)

Signals & Spectra (1A) 22 Young Won Lim
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Summary (1)

Non-periodic signals Periodic signals Random signals
Energy Signal Power Signal Power Signal
+T/2 1 +T/2 1 +T/2
ET = [ X(t)dt Pl == | X(t)dt Pl = ] X(t)dt
-T2 -T/2 -T/2
Energy Spectral Density Power Spectral Density Power Spectral Density
+ 00 . 1
w(f) = [X(f)F G.(f) = Xlefd(f=nfo)  G(f) = lim[X.(f)f
Total Energy Average Power Average Power
|7 wir)df I Gdr)df I Gdr)dr
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Summary (2)

Energy Signal
Autocorrelation

Power Signal
Autocorrelation

x(t)x(t+<)dt

Periodic signals

for a Periodic Signal

Random Signal
Autocorrelation

Random signals
for a Ergodic Signal

R,(t) =

lim & f+m X(t) X(t+) dt

T-)+oo T2
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