
Day20 A

Young W. Lim

2017-12-05 Tue

Young W. Lim Day20 A 2017-12-05 Tue 1 / 10

Outline

1 Based on

2 Linked List Data Structure
Data Structure
Dynamic Memory Allocation
Linked Lists

Young W. Lim Day20 A 2017-12-05 Tue 2 / 10

Based on

"C How to Program",
Paul Deitel and Harvey Deitel

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Day20 A 2017-12-05 Tue 3 / 10

Types of Data Structures

Linked Lists
collection of data items linked together
insertion and deletion can be performed anywhere in a linked list

Stacks
insertion and deletion can be performed only at the top

Queues
insertion is performed one end of a queue (back, tail)
deletion is performed antother end of a queue (front, head)

Binary Trees
efficient search, sorting, eliminaton of duplicate items
used for file system directories and compilers

Young W. Lim Day20 A 2017-12-05 Tue 4 / 10

Self-Referential Structures

contains a pointer member that points to a sturcure of the same type
can be linked together to form lists, queues, stack and trees
the pointer member represented as an arrow
in the figures of these data structures
A NULL pointer normally indicates the end of a data structure

Young W. Lim Day20 A 2017-12-05 Tue 5 / 10

Dynamic Data Structures

dynamic data structures grow and shrink at execution time
data items in link lists, stacks, queues and binary trees
are increasing and decreasing during execution time

dynamic memory allocation is used
malloc
calloc
realloc
free

Young W. Lim Day20 A 2017-12-05 Tue 6 / 10

Dynamic Memory Allocation : malloc

receives the number of bytes to be allocated
returns a void * pointer to the allocated memory
this void * pointer is assigned to a pointer variable of any data type

pointer type casting : (int *), (double *)

int *p

p = malloc(10 * sizeof(int));

p = (int *) malloc(10 * sizeof(int));

Young W. Lim Day20 A 2017-12-05 Tue 7 / 10

Dynamic Memory Allocation : calloc, ralloc, free

the allocated memory
not initialized : malloc
zero initialized : calloc (c for clear)
can be resized : realloc (shrink, grow)

when an error happens during allocation,
all these functions return NULL
free deallocates memory
so that the memory can be reused in the future

Young W. Lim Day20 A 2017-12-05 Tue 8 / 10

Linked Lists (1)

a linear collection of
self-referenced structures (called node)
connected by pointer links
accessed via a pointer to the first node
subsequent nodes are accessed via the link pointer member
the link pointer member of the last node is set to NULL

Young W. Lim Day20 A 2017-12-05 Tue 9 / 10

Linked Lists (2)

data is stored in a linked list dynamically

the length of a list can increase and decrease as necessary

each node is created as necessary
a node can contain data of any type
including other structure object
normally not stored contiguously in memory
logically, however, the nodes of a linked list appear to be contiguous

Young W. Lim Day20 A 2017-12-05 Tue 10 / 10

	Based on
	Linked List Data Structure
	Data Structure
	Dynamic Memory Allocation
	Linked Lists

