
Day14 A

Young W. Lim

2017-12-26 Tue

Young W. Lim Day14 A 2017-12-26 Tue 1 / 15

Outline

1 Based on

2 C Strings (1)
Characters and Strings
Unformatted IO

Young W. Lim Day14 A 2017-12-26 Tue 2 / 15

Based on

"C How to Program",
Paul Deitel and Harvey Deitel

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Day14 A 2017-12-26 Tue 3 / 15

Characters

a character constant is an int value
a character is represented by single quotes
the value of a character constant is
the character’s integer value in the machines’ character set

ASCII

Young W. Lim Day14 A 2017-12-26 Tue 4 / 15

Strings

a series of characters
treated as a single unit
may include

letters, digits
various special characters
such as +, -, *, / and $.

$string literal$s or $string constant$s are in double quotes
a string is accessed via a pointer to its first character
the value of a string is the the address of its first character

Young W. Lim Day14 A 2017-12-26 Tue 5 / 15

Intialization

a character array can be initialized with a string constant.
char a[20] = "Hello, world!";
each element of the array a can be changed
a charatter pointer can be intialized with a string constant.
char *p = "Hello, world!";
no element of the string constant can be modified

Young W. Lim Day14 A 2017-12-26 Tue 6 / 15

Character Pointer Initialization (1)

char *s = "Hello, World!";

a character pointer s is declared with an initialization
the value of s is an address
of a memory location where a character resides
"Hello, World!" is a constant character string
stored in the read-only memory region (defined by a compiler)
"Hello, World!" returns the address
of the 1st character in the string (the address of ’H’)
s points to this address of the 1st character

Young W. Lim Day14 A 2017-12-26 Tue 7 / 15

Character Pointer Initialization (2)

char *s = "Hello, World!";

s[5]=0 causes a run-time error (Segmentation Faults)
though this string is a string constant,
it is not explicitly declared with const,
therefore, no error message will be shown during compilation
but during execution, the "Segmentation fault" error occurs
because s[5]=0 attempts to change its element
in the read-only memory location.
we can compile but cannot execute normally.

Young W. Lim Day14 A 2017-12-26 Tue 8 / 15

Types of Unformatted IO

stdio file
character getc putc fgetc fputc

getchar putchar
string gets puts fgets fputs

c : character
s : string
f : file
get : read, input
put : write, output

getchar() = getc(stdin)
putchar(c) = putc(c, stdout)
gets(s) = fgets(s, stdin)~
do not use gets

insecure (no bound check)

Young W. Lim Day14 A 2017-12-26 Tue 9 / 15

Standard I/O Library Functions

fgets reads characters until

a newline character or
the end-of-file character

is encountered

arguemnt :

an array of type char
the maximum number of characters that can be read
the stream from which to read

a null character is appened to the array after finishing

char *fgets(char *s, int size, FILE *stream);

Young W. Lim Day14 A 2017-12-26 Tue 10 / 15

getc/putc vs fgetc/fputc

stdio file
character getc putc fgetc fputc

getc can be implemented as a macro
fgetc cannot be implemented as a macro

the argument to getc should not be an expression with side effects
since fgetc is guaranteed to be a function,
pointer to fgetc can be used
calls to fgetc probably take longer than calls to getc

– Advanced Programming in Unix Environment

practically, no significant differences
getc(stream) = fgetc(stream)
putc(c, stream) = fputc(c, stream)

Young W. Lim Day14 A 2017-12-26 Tue 11 / 15

Stream

a common, logical interface to the various devices
a stream is be a logical interface to a file

a disk file
a tape file
a port
the screen (stdout)
the keyboard (stdin)

Although files differ in form and capabilities,
all streams are the same. (a uniform interface)

https://www.le.ac.uk/users/rjm1/cotter/page_74.htm

Young W. Lim Day14 A 2017-12-26 Tue 12 / 15

https://www.le.ac.uk/users/rjm1/cotter/page_74.htm

fopen and fclose

FILE * fopen (const char * filename, const char * mode);
int fclose (FILE * stream);

"r" read
"w" write
"a" append
"r+" read/update
"w+" write/update
"a+" append/update

#include <stdio.h>
int main ()
{

FILE * pfile; // pfile stream

pfile = fopen ("test.txt","w");

if (pfile!=NULL) {
fputs ("fopen example",pfile);
fclose (pfile);

}
}

Young W. Lim Day14 A 2017-12-26 Tue 13 / 15

getchar() and a buffer

there is an underlying buffer/stream
when you enter text, the text is stored in a buffer somewhere
the enter key must be pressed before getchar() gets anything to read
getchar() can stream through the buffer one character at a time
each read returns a character

until it reaches the end of the buffer (EOF)
until you press CTRL+D (end of file)

https:
//stackoverflow.com/questions/3676796/how-does-getchar-work

Young W. Lim Day14 A 2017-12-26 Tue 14 / 15

https://stackoverflow.com/questions/3676796/how-does-getchar-work
https://stackoverflow.com/questions/3676796/how-does-getchar-work

EOF

EOF isn’t a character that exists in the stream, but a sentinel value
to indicate when the end of the input has been reached.

https:
//stackoverflow.com/questions/3676796/how-does-getchar-work

Young W. Lim Day14 A 2017-12-26 Tue 15 / 15

https://stackoverflow.com/questions/3676796/how-does-getchar-work
https://stackoverflow.com/questions/3676796/how-does-getchar-work

	Based on
	C Strings (1)
	Characters and Strings
	Unformatted IO

