Dayl3 A

Young W. Lim

2017-10-25 Wed

Young W. Lim Dayl3 A 2017-10-25 Wed 1/20

@ Based on

© Pointers (2) - Applications
@ Pointers and Arrays
@ Arrays of Pointers
@ Pointers to Functions
@ Using the const Qualifier with Pointers

Young W. Lim Dayl3 A 2017-10-25 Wed 2/ 20

Based on

"C How to Program",
Paul Deitel and Harvey Deitel

1, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,

and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Dayl3 A 2017-10-25 Wed 3/20

Pointers and 1-d Arrays

@ are intimately related in C
@ can be used interchangeably (a[i] = *(a+i))

@ the array name can be thought as a constant pointer

@ pointers can do any operation that the array subscript does

Young W. Lim Dayl3 A 2017-10-25 Wed 4 /20

Offset vs Subscript Notations (1)

int al4];

int *p = a;

a : 1-d array name

p : pointer variable

pointer-offset notation : *(p+i), offset i

pointer-subscript notation :

Young W. Lim

pl[il, subscript i

Dayl3 A

2017-10-25 Wed

5 / 20

Offset vs Subscript Notations (2)

@ pointer-offset notation : *(p+i)

@ pointer-subscript notation : p[il

@ when a pointer points to the beginning of an array

@ by changing an offset which is added to this start pointer
every element of the array can be referenced *(p + i)

@ pointers can be subscripted exactly as arrays can p[i]

o the offset value is identical to the array subscript

Young W. Lim Dayl3 A 2017-10-25 Wed 6 /20

1-d Array Names and Pointers (1)

int al[4]; int *p = a;

a : 1-d array name

p : pointer variable

a 1-d array name is a pointer but it is a constant pointer
an 1-d array name cannot be modified

a[i] subscript notation

*(a + i) offset notation

Young W. Lim Dayl3 A 2017-10-25 Wed 7/ 20

1-d Array Names and Pointers (2)

int main(void) {
int af[4] = { 100, 200, 300, 400 };
int *p;
int i;

for (i=0; i<4; ++i) {
printf("&al%dl= %p ", i, &alil);
printf (" al%dl= %d \n", i, alil);
}

P =a;
for (i=0; i<4; ++i) {
printf ("p= %p ", P
printf ("*p= %d \n", *p);
p += 1i;
}
}

Young W. Lim Dayl3 A 2017-10-25 Wed 8/ 20

1-d Array Names and Pointers (3)

e p += 1; (OK - a pointer variable)
1

@ a += 1; (Error - a constant pointer)

&a[0]= 0x7ffeac902c80 al0]= 100
&al[1]= 0x7ffeac902c84 a[1]= 200
&a[2]= 0x7ffeac902c88 a[2]= 300
&a[3]= 0x7ffeac902c8c a[3]= 400
p= 0x7ffeac902c80 *p= 100
p= 0x7ffeac902c80 *p= 100
p= 0x7ffeac902c84 *p= 200
p= 0x7ffeac902c8c *p= 400

Young W. Lim Dayl3 A 2017-10-25 Wed 9/ 20

1-d Array Names and Pointers (4)

@ the 1-d array name can be treated as a pointer

@ but the array name pointer cannot be modified

@ cannot do pointer arithemtic expressions
that modify the pointer itself

Young W. Lim Dayl3 A 2017-10-25 Wed 10 / 20

Arrays of Pointers (1)

@ arrays can contain pointers

int main(void) {
int a = 100;
int A[4] = { 100, 200, 300, 400 };

int *p = &a;

int *P[4] = { &A[0], &A[1], &A[2], &A[3] };

int i;

printf("&a= %p ", &a);
printf(" a= %d\n", a);

printf("-----mmm e~ \n") ;
printf("&p= %p ", &p);
printf(" p=%p ", P);

printf ("*p= %d\n", *p);

Young W. Lim Day13 A

2017-10-25 Wed

11 / 20

Arrays of Pointers (2)

for (i=0; i<4; ++i) {
printf ("&A[%d]= %p ", i, &A[il);
printf (" A[%d]l= %d\n", i, A[il);
}

printf (M -—om oo \n");
for (i=0; i<4; ++i) {
printf ("&P[%d]l= %p ", i, &P[il);
printf(" P[%dl= %p ", i, P[il);
printf ("*P[%d]l= %d\n", i, *P[il);
}
}

Young W. Lim Dayl3 A 2017-10-25 Wed 12 / 20

Arrays of Pointers (3)

@ arrays can contain pointers

&a= 0x7ffc419£f6a70 a= 100

&p= 0x7ffc419f6a78 p= 0x7ffc419f6a70 x*p= 100

&A[0]= 0x7ffc419f6a80 Af0]= 100

&A[1]= 0x7ffc419f6a84 A[1]= 200

&A[2]= 0x7ffc419f6a88 A[2]= 300

&A[3]= 0x7ffc419f6a8c A[3]= 400

&P [0]= 0x7ffc419f6a90 P[0]= Ox7ffc419f6a80 *P[0]= 100
&P[1]= 0x7ffc419f6a98 P[1]= Ox7ffc419f6a84 *P[1]= 200
&P [2]= 0x7ffc419f6aal P[2]= 0x7ffc419f6a88 *P[2]= 300
&P [3]= 0x7ffc419f6aa8 P[3]= 0x7ffc419f6a8c *P[3]= 400

Young W. Lim Dayl3 A 2017-10-25 Wed 13 / 20

Arrays of Strings (1)

@ an array of pointers can be used to form an array of strings

e each entry in the array is a string

e a string is a sequence of characters
o the first character of a string is denoted by a pointer to that character
o the end of a string is denoted by the null terminating character (7'\0'™)

e a string is therefore identified by a pointer to its first character
e each entry in an array of strings is such a pointer
to the first character of a string

Young W. Lim Dayl3 A 2017-10-25 Wed 14 / 20

Arrays of Strings (2)

include <stdio.h>

int main(void) {

char *s1 = "John";
char *s2 = "Baker";
char *s3 = "Park";
char *s4 = "Kim";

s1= John
s2= Baker
s3= Park
s4= Kim
S[0]= John
S[1]= Baker
S[2]= Park
S[3]= Kim

char *S[4] = { s1, s2, s3, s4 };

int i;

printf("sl= %s \n",
printf("s2= %s \n",
printf("s3= %s \n",
printf("s4= %s \n",

for (i=0; i<4; ++i)

printf ("S[/dl= %s
}

Young W. Lim

s1);
s2);
s3);
s4);

{
\n", i, S[il);

Dayl3 A 2017-10-25 Wed 15 / 20

Pointer to a Function

a pointer to a function contains the address of the function in memory

a function name is really the starting address
of the functions machine code that performs the function's task

a pointer to a function is dereferenced (*fp)to call the function

a function pointer (fp) can be used directly

like the function name is used

when calling the function

@ a common use of function pointers is in text-based, menu-driven
system

Young W. Lim Dayl3 A 2017-10-25 Wed 16 / 20

Function Pointer Examples (1)

#include <stdio.h> printf("a= %d b= %d \n", a, b);

int add(int x, int y) { printf("----mm e \n");
return (x + y); fp = &add; v = (xfp)(a, b);

} printf("fp = &add %p \n", fp);

printf (" (*fp)(a, b) = %d \n", v);
int sub(int x, int y) {

return (x - y); printf("-———--mmm e \n");
} fp = ⊂ v = (xfp)(a, b);
printf("fp = &sub Y%p \n", fp);
int mul(int x, int y) { printf (" (*fp)(a, b) = %d \n", v);
return (x * y);
} printf (M-—-—--mmmmm e \n");
fp = &mul; v = (xfp)(a, b);
int div(int x, int y) { printf("fp = &mul %p \n", fp);
return (x / y); printf (" (xfp)(a, b) = %d \n", v);
}
printf (M -—-—mmm e \n");
int main(void) { fp = ÷ v = (xfp)(a, b);
int a = 30, b = 2; printf("fp = &div Y%p \n", fp);
int v; printf (" (xfp)(a, b) = %d \n", v);
int (*fp) (int x, int y); }

Young W. Lim Dayl3 A 2017-10-25 Wed 17 / 20

Function Pointer Examples (2)

a= 30 b= 2 - these are also working
fp = &add 0x400596 fp = add;

(xfp) (a, b) = 32 v = (fp)(a, b);

fp = &sub 0x4005aa fp = sub;

(xfp) (a, b) = 28 v = (fp)(a, b);

fp = &mul 0x4005bc fp = mul;

(xfp) (a, b) = 60 v = (fp)(a, b);

fp = &div 0x4005cf fp = div;

(*#fp) (a, b) = 15 v = (fp)(a, b);

Young W. Lim Dayl3 A 2017-10-25 Wed 18 / 20

const qualifier

@ to indicate that the value of a particular variable should not be
modified

@ if an attempt is made to modify the value of a const quailifed variable
either a warning or an error message will be issued

o four ways to pass a pointer to a function

a non-constant pointer to non-constant data | int *p

constant pointer to non-constant data int * const p

a non-constant pointer to constant data const int *p

a constant pointer to constant data const int * const p

Young W. Lim Dayl3 A 2017-10-25 Wed 19 / 20

const qualifier usage

a non-constant pointer to non-constant data | int *p
- the data can be modified through *
- the pointer can point to other data

constant pointer to non-constant data int * const p
- the data can be modified through *

- the pointer cannot point to other data array name
a non-constant pointer to constant data const int *p

- the data cannot be modified through *
- the pointer can point to other data

a constant pointer to constant data const int * const p
- the data cannot be modified through *
- the pointer cannot point to other data

const int ¥ = int const ¥ = const int const *

Young W. Lim Dayl3 A 2017-10-25 Wed 20 / 20

	Based on
	Pointers (2) - Applications
	Pointers and Arrays
	Arrays of Pointers
	Pointers to Functions
	Using the const Qualifier with Pointers

