
Day11 A

Young W. Lim

2017-10-24 Tue

Young W. Lim Day11 A 2017-10-24 Tue 1 / 21

Outline

1 Based on

2 Arrays (2) - and Functions
Arrays and Functions
Multidimensional Arrays
Size
Array Applications

Young W. Lim Day11 A 2017-10-24 Tue 2 / 21

Based on

"C How to Program",
Paul Deitel and Harvey Deitel

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Day11 A 2017-10-24 Tue 3 / 21

Passing an array to functions

to pass an array argument to a function
the name of an array without brackets
the size of an array

always to pass by reference
the start address of an array is passed by reference
the called function can modify the elements of the caller’s array
use const, if the prevention of this modification is desired

Young W. Lim Day11 A 2017-10-24 Tue 4 / 21

Receiving an array through a function call

in the parameter list of a function definition
specify the array name with empty brackets

the number inside the brackets represents the array size
the arrary size is ignored, for 1-d dimensional arrays
therefore, any non-negative number is ok
or just empty barckets

specify the size of an array as a separate parameter

Young W. Lim Day11 A 2017-10-24 Tue 5 / 21

Passing an individual element of an array

like an ordinary variable, an individual array element can

passed by value : a[1], a[i]
passed by reference : &a[1], &a[i], (a+1), (a+i)

such simple pieces of data are called scalars
use the subscripted name of the array element as an argument

Young W. Lim Day11 A 2017-10-24 Tue 6 / 21

Receiving an individual element of an array

like an ordinary variable, an individual array element can be

received by value : int a1, int ai
received by reference : int *p1, int *pi

do not need the subscripted name in the parameter list

Young W. Lim Day11 A 2017-10-24 Tue 7 / 21

2-dimensional arrays

representing tables of values
arranged in rows and columns

to identify an element of a table
two subscripts are needed
(row subscript, col subscript)
double scripted arrays

Young W. Lim Day11 A 2017-10-24 Tue 8 / 21

2-dimensional array initialization

the intializer values are grouped by row in braces { }
when not enough initializers for a given row
the remaining elements of that row are intialized with zero

{ row_0, row_1, ..., row_m }

{ {a_00, a_01, ..., a_0n},
{a_10, a_11, ..., a_1n},
{a_00, a_01, ..., a_0n},
{a_m0, a_m1, ..., a_mn} } (m+1)x(n+1)

Young W. Lim Day11 A 2017-10-24 Tue 9 / 21

2-dimensional array initialization examples

#include <stdio.h>

int main(void) {
int a[3][4] = { {1, 2, 3, 4},

{5, 6, 7, 8},
{9,10,11,12} };

int i, j;

for (i=0; i<3; ++i) {
for (j=0; j<4; ++j)

printf("%3d ", a[i][j]);
printf("\n");

}
}

1 2 3 4
5 6 7 8
9 10 11 12

#include <stdio.h>

int main(void) {

int b[3][4] = { {1, 2, 3, 4},
{5, 6} };

int i, j;

for (i=0; i<3; ++i) {
for (j=0; j<4; ++j)

printf("%3d ", b[i][j]);
printf("\n");

}
}

1 2 3 4
5 6 0 0
0 0 0 0

Young W. Lim Day11 A 2017-10-24 Tue 10 / 21

Row major order

all array elements are stored consecutively in memory
regardless of the number of subscripts
2-dimensional array,
the first row is stored in memory
then the second row follows the first row in memory

Young W. Lim Day11 A 2017-10-24 Tue 11 / 21

Passing a muti-dimensional array

a multi-dimensional array in a parameter list

each script represents the size of a corresponding dimension
the first subscript size is not required
all subsequent subscript sizes are required
to identify a memory location of an element
the size informations for each dimension are necessary
except for the 1st dimension
a[][M][N] in a parameter list

Young W. Lim Day11 A 2017-10-24 Tue 12 / 21

Accessing a muti-dimensional array

a[][M][N] in a parameter list
a[i][j][k] = *a(((i*M+j)*N + k)) in accessing an element
each row can be viewed as a 2-dimensional array
p = a[i];

a[i] a[i][j][k]
p p[j][k]

Young W. Lim Day11 A 2017-10-24 Tue 13 / 21

The type size_t

unsigned integral type
unsigned int for one computer
unsigned long for another computer

translation may be required
the code for one computer
the code for another computer
size_t provides portability of a code

defined in <stddef.h>
which is often included by <stdio.h>

size_t is recommended for any variable
that represents an array’s size or an array’s subscripts

Young W. Lim Day11 A 2017-10-24 Tue 14 / 21

sizeof Operator

unary operator sizeof determines the size in bytes
of a variable or a type at compile time
When applied to the name of an array,
sizeof returns the total number of bytes in the array
The type size_t is an integral type

unsigned int
unsigned long int
returned by operator sizeof
defined in <stddef.h>

Operator sizeof can be applied to any variable name, type, or value
The parenthesis used with sizeof required
if a type name is supplied as its operand

Young W. Lim Day11 A 2017-10-24 Tue 15 / 21

Sorting algorithm

placing the data into a particular order

ascending order
descending order

various sorting algorithms

bubble sort

Young W. Lim Day11 A 2017-10-24 Tue 16 / 21

Bubble sorting algorithm

the smaller values gradually "bubble" their way upward to the top
the larger values gradually sink down to the bottom

several passes over the array
on each pass, successive pairs of elements are compared

if a pair is in non-decreasing order, no action
otherwise, swap the elements of the pair
a small value can be moved up by only one position
a large value can be moved down by many positions

Young W. Lim Day11 A 2017-10-24 Tue 17 / 21

Search algorithm

the processing of finding a particular element in an array
such a particular element to be found : a search key
find the location (subsript) of a search key in the searched array

linear search algorithm
binary search algorithm

Young W. Lim Day11 A 2017-10-24 Tue 18 / 21

Linear search algorithm

1 when the given array is unsorted

only linear search can be applied
on average, the program will have to compare
the search key with the half the elements

1 when the given array is sorted

linear search still can be used for a small size array
binary search is more efficient for a large size array

Young W. Lim Day11 A 2017-10-24 Tue 19 / 21

Binary search algorithm (1)

eliminates from consideration one-half of the elements
in the sorted array whenever comparison is made
comparision is made only
with the middle element of the sorted array
recursively reduce the given problem by half
repeat until

the search key is equal to the middle element
or the reduced problem contains only one element
which is not equal to the search key

Young W. Lim Day11 A 2017-10-24 Tue 20 / 21

Binary search algorithm (2)

locates the middle element of the sorted array (increasing order)
compare this middle element with the search key

if equal, the search key is found
if not equal, the problem is reduced to searh only the half

when the seach key is less than the middle element
search only the first half of the array
when the seach key is greater than the middle element
search only the second half of the array

Young W. Lim Day11 A 2017-10-24 Tue 21 / 21

	Based on
	Arrays (2) - and Functions
	Arrays and Functions
	Multidimensional Arrays
	Size
	Array Applications

