DEVIA

Young W. Lim

2017-10-07 Sat

Young W. Lim Day09 A 2017-10-07 Sat 1/12



@ Based on

© Functions (3) - Recursion
@ Function Prototypes
@ Stack Frames
@ Recursion

Young W. Lim Day09 A 2017-10-07 Sat 2/12



Based on

"C How to Program",
Paul Deitel and Harvey Deitel

1, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,

and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Day09 A 2017-10-07 Sat 3/12



Function Prototypes

@ declares the function's return type

@ declares the parameter's number, type, and order

@ enable the compiler to verify that the function call is valid

@ the compiler ignore the exact variable names of the function prototype

Young W. Lim Day09 A 2017-10-07 Sat 4 /12



Unresolved References

indicates to the compiler that the specified function is defined

e either later in the same file
e or in a different file

separate compilation and linking
the compiler does not attemp to resolve references to such functions

the linker will resolve unresolved references

if the linker cannot locate a proper function definition,
the linker issues an error message

Young W. Lim Day09 A 2017-10-07 Sat 5/ 12



@ a stack of dishes
@ LIFO (last in first out) data structure

o the last item pushed on the stack
o the first item popped from the stack

Young W. Lim Day09 A 2017-10-07 Sat 6 /12



Function Calls and Returns

@ a called function knows how to return to the caller
o the return address is pushed onto the program execution stack

@ main() calls funcl() — push funcl's return address
@ funcl() calls func2() — push func2's return address
© func2() calls func3() — push func3'’s return address

Q@ func3() returns to func2() — pop func3's return address
@ func2() returns to funcl() — pop func2’s return address

© funcl() returns to main() — pop funcl's return address

Young W. Lim Day09 A 2017-10-07 Sat 7/ 12



Program Execution Stack

@ the program execution stack also contains
the local variables for each invocation of a function

@ one stack frame of a function call

@ when a function call is made,
the stack frame of that function call is
pushed onto the program execution stack

@ when a function return is made,
the stack frame of that function call is
popped off the program execution stack

o the local variable of that invocation exist no longer

Young W. Lim Day09 A 2017-10-07 Sat 8/ 12



Program Execution Stack

@ the size of memory is finite

@ only a certain amount of memory can be used

o stack overflow error

e when there are more function calls
than can be their stack frames stored on the program execution stack

Young W. Lim Day09 A 2017-10-07 Sat 9 /12



Recursive Function Call

@ function that calls itself either directrly or undirectly

@ the base case
the recursive function simply returns a result

@ complex cases
the recursive function divides the complex problems
into two smaller problems
the base problem + a slightly smaller problem

e viewing this smalller problem as the new given problem
the procedure recursively applied

Young W. Lim Day09 A 2017-10-07 Sat 10 / 12



Recursive Function Return

@ for recursion to terminate,
each time the recursive function calls the slighty smaller problem
the sequence of smaller and smaller problems must converge on the
base case

@ when the function recognizes the base case,
the result is returned to the previous function call,
and the combined result is returned to its previous function call

@ the sequence of returns ensues all the way up to the original call
and returns the final result

Young W. Lim Day09 A 2017-10-07 Sat 11 / 12



Recursive Function Calls and Returns

@ a called function knows how to return to the caller
o the return address is pushed onto the program execution stack

@ main() calls func() — push func's 1st return address
@ func() calls func() — push func’'s 2nd return address
© func() calls func() — push func’s 3rd return address

@ func() returns to func() — pop func’s 3rd return address
@ func() returns to func() — pop func's 2nd return address

© func() returns to main() — pop func's Ist return address

Young W. Lim Day09 A 2017-10-07 Sat 12 /12



	Based on
	Functions (3) - Recursion
	Function Prototypes
	Stack Frames
	Recursion


