# The Growth of Functions (2A)

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

#### **Functions and Ranges**





All are distinguishable

for x > -0.5  $x^2 < x^2 + 2x + 1$ 

The Growth of Functions (2A)

## Medium Range





#### **Functions and Ranges**



#### Small Range, $2x^2$



#### Medium Range, $2x^2$



#### Large Range, $2x^2$



#### **Functions and Ranges**



#### Small Range, *10x*<sup>2</sup>



## Medium Range, $10x^2$





#### **Functions and Ranges**



#### Small Range, *10x*



#### Medium Range, *10x*





# Big-O Definition



# Big- $\Omega$ Definition



# Big-O Definition

for 
$$k < x$$
  
 $f(x) \le C|g(x)|$   
 $f(x)$  is  $O(g(x))$ 

g(x) : upper bound of f(x)

g(x) has a simpler form than f(x) is usually a single term

# Big- $\Omega$ Definition

for 
$$k < x$$
  
 $f(x) \ge C|g(x)|$   
 $f(x)$  is  $\Omega(g(x))$ 



g(x) : lower bound of f(x)

g(x) has a simpler form than f(x) is usually a single term

for 
$$k < x$$

$$f(x) \le C|g(x)| \iff f(x) \text{ is } O(g(x))$$

$$C|g(x)| \le f(x) \qquad \longleftrightarrow \qquad f(x) \text{ is } \Omega(g(x))$$

$$C_1|g(x)| \le f(x) \le C_2|g(x)| \iff f(x) \text{ is } \Theta(g(x))$$

#### $Big-\Theta = Big-\Omega \cap Big-\Theta$



# $\Theta(x)$ and $\Theta(1)$

for 
$$0 < k < x$$

$$f(x) \le C x$$
 $f(x)$  is  $O(x)$  $Cx \le f(x)$  $f(x)$  $f(x)$  $f(x)$  $C_1x \le f(x) \le C_2 x$  $f(x)$ 







The Growth of Functions (2A)

# Big-O, Big- $\Omega$ , Big- $\Theta$ Examples



 $x^{2}+2x+1$  is  $\Theta(x^{2})$ 



for x > 7.87310  $x < x^2 + 2x + 1$   $x^2 + 2x + 1$  is  $\Omega(x)$ lower bound

The Growth of Functions (2A)

#### Many Larger Upper Bounds



the least upper bound?

The Growth of Functions (2A)

#### Many Smaller Lower Bound



the greatest lower bound?

The Growth of Functions (2A)



## Many Upper and Lower Bounds





#### Simultaneously being lower and upper bound

#### $f(x) = x^2 + 2x + 1$



# Big-**O** Examples (1)



# Big-**O** Examples (2)



# Big-**O** Examples (3)



# **Tight bound Implications**

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } O(g(x))$$

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } \Omega(g(x))$$

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } O(g(x))$$

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } \Omega(g(x))$$



The Growth of Functions (2A)

#### **Common Growth Functions**



# Upper bounds



#### Lower bounds



$$f(n)=n^{6}+3n$$
  

$$f(n)=2^{n}+12$$
  

$$f(n)=2^{n}+3^{n}$$
  

$$f(n)=n^{n}+n$$

$$f(n)=O(n^{6})$$
  

$$f(n)=O(2^{n})$$
  

$$f(n)=O(3^{n})$$
  

$$f(n)=O(n^{n})$$

$$f(n) = \Omega(n)$$
  

$$f(n) = \Omega(1)$$
  

$$f(n) = \Omega(2^{n})$$
  

$$f(n) = \Omega(n)$$

https://discrete.gr/complexity/

$$\begin{array}{ll} f(n) = n^{6} + 3n & f(n) = O(n^{6}) & f(n) = \Omega(n^{6}) & f(n) = \Theta(n^{6}) \\ f(n) = 2^{n} + 12 & f(n) = O(2^{n}) & f(n) = \Omega(2^{n}) & f(n) = \Theta(2^{n}) \\ f(n) = 2^{n} + 3^{n} & f(n) = O(3^{n}) & f(n) = \Omega(3^{n}) & f(n) = \Theta(3^{n}) \\ f(n) = n^{n} + n & f(n) = O(n^{n}) & f(n) = \Omega(n^{n}) & f(n) = \Theta(n^{n}) \end{array}$$

https://discrete.gr/complexity/



https://discrete.gr/complexity/

The Growth of Functions (2A)

40



https://discrete.gr/complexity/



https://discrete.gr/complexity/

The Growth of Functions (2A)



Young Won Lim 4/10/18

$$f(n) = 6n^2 + 3n$$

$$f(n) = O(n^2) \longrightarrow f(n) = O(n^3)$$
  

$$f(n) = \Theta(n^2) \longrightarrow f(n) \not \ge \Theta(n^3)$$
  

$$f(n) = \Omega(n^2) \longrightarrow f(n) \not \ge \Omega(n^3)$$

upper bound

$$c_1 n^2 - c_2 n^3 = n^2 (c_1 - c_2 n)$$

$$f(n) = O(n^2) \longrightarrow f(n) \not\ge O(n)$$
  

$$f(n) = \Theta(n^2) \longrightarrow f(n) \not\ge \Theta(n)$$
  

$$f(n) = \Omega(n^2) \longrightarrow f(n) = \Omega(n)$$

 $c_1 n^2 - c_2 n = n(c_1 n - c_2)$ 

lower bound





generally not true always false always true



#### References

