Partial Oder Relations (5A)

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

A (non-strict) **partial order** is a binary relation \leq over a set P satisfying particular axioms. When $\mathbf{a} \leq \mathbf{b}$, we say that \mathbf{a} is related to \mathbf{b} . (This does not imply that \mathbf{b} is also related to \mathbf{a} , because the relation need not be symmetric.)

That is, for all **a**, **b**, and **c** in P, it must satisfy:

 $a \le a$ (reflexivity) if $a \le b$ and $b \le a$, then a = b (antisymmetry) if $a \le b$ and $b \le c$, then $a \le c$ (transitivity)

https://en.wikipedia.org/wiki/Hasse_diagram

The axioms for a non-strict partial order state that the relation \leq is

reflexive: every element is related to itself.

antisymmetric: two distinct elements cannot be related in both directions

transitive: if a first element is related to a second element, and, in turn, that element is related to a third element, then the first element is related to the third element

https://en.wikipedia.org/wiki/Hasse_diagram

4

Relation Examples (1)

 $x \ge y$

	1	2	3	4	5
1	(1,1)				
2	(2,1)	(2,2)			
3	(3,1)	(3,2)	(3,3)		
4	(4,1)	(4,2)	(4,3)	(4,4)	
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)

Reflexive Relation & Anti-Symmetric Relation & Transitive Relation

Partial Order Relation

Anti-symmetric Relation

 $x \ge y$

	1	2	3	4	5
1	(1,1)				
2	(2,1)	(2,2)			
3	(3,1)	(3,2)	(3,3)		
4	(4,1)	(4,2)	(4,3)	(4,4)	
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)

Transitive Relation

(%i2) A:matrix((%i5) A3 : A.A.A;	(%i8) A6: A.A.A.A.A.A;	(%i11) A+A2+A3+A4+A5;
[0,0,0,0,0],	[0 0 0 0 0]	6 0 0 0	
[1,0,0,0],		0 0 0 0 0	
[1,1,0,0,0],	0 0 0 0		10000
[1,1,1,0,0], (%05	5) 0 0 0 0 0	(%08) 0 0 0 0	(%011) 2 1 0 0 0
[1,1,1,1,0]);	10000	00000	4 2 1 0 0
0 0 0 0 0	3 1 0 0 0	0 0 0 0	8 4 2 1 0
10000			
(%i6	A4: A.A.A.A;	(%i9) A7 : A6.A;	
(%02) 1 1 0 0 0	0 0 0 0 0	00000	
1 1 1 0 0	0 0 0 0 0	0 0 0 0 0	
1 1 1 1 0		(%o9) 0 0 0 0 0	
(%06	5) 0 0 0 0 0		
(%i4) A2 : A.A;	00000	0000	
	1 0 0 0 0	0 0 0 0	
0 0 0 0 0			
(%i7) A5: A.A.A.A.A;	(%i10) A8 : A7.A;	
(%04) 10000	0 0 0 0 0	0 0 0 0	
2 1 0 0 0	0 0 0 0 0	0 0 0 0 0	
32100			
(%07	') 0 0 0 0 0	(%010) 0 0 0 0 0	
	00000	00000	
	0 0 0 0	0 0 0 0	

Partial Order Relations (5A)

Relation Examples (1)

Reflexive Relation & Anti-Symmetric Relation & Transitive Relation

Not Partial Order Relation

x > y

	1	2	3	4	5
1					
2	(2,1)				
3	(3,1)	(3,2)			
4	(4,1)	(4,2)	(4,3)		
5	(5,1)	(5,2)	(5,3)	(5,4)	

https://en.wikipedia.org/wiki/Cartesian_product

Equivalence Relation

Partial Order Relation

Reflexive Relation & Anti-Symmetric Relation & Transitive Relation

References

