
Young Won Lim
6/28/18

Automata Theory (2B)

● PushDown Automata (PDA)

Young Won Lim
6/28/18

 Copyright (c) 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

mailto:youngwlim@hotmail.com

Pushdown Automata (2B) 3 Young Won Lim
6/28/18

Deterministic Pushdown Automaton (PDA)

Pushdown Automata (2B) 4 Young Won Lim
6/28/18

Deterministic PDA (1) – transition relation

https://en.wikipedia.org/wiki/Pushdown_automaton

An element (p, a, A, q, α) δ is a ∈ transition of M.

in state p Q, ∈
on the input a Σ { ε } and ∈ ∪
with A Γ as ∈ topmost stack symbol,

M may
● read a,
● change the state to q,
● pop A,
● replacing it by pushing α Γ∈ ∗.

Pushdown Automata (2B) 5 Young Won Lim
6/28/18

Deterministic PDA (1) – input operations

https://en.wikipedia.org/wiki/Pushdown_automaton

on the input a Σ { ε } ∈ ∪

the (Σ { ε }) component of the ∪ transition relation

is used to formalize that the PDA can

either read a letter from the input, Σ

or proceed leaving the input untouched. ε

Pushdown Automata (2B) 6 Young Won Lim
6/28/18

Deterministic PDA (2) – transition function

https://en.wikipedia.org/wiki/Pushdown_automaton

δ is the transition function,

mapping Q × (Σ {ε}) × Γ ∪

into finite subsets of Q × Γ∗

Here δ (p, a, A) contains all possible actions in state p

with A on the stack, while reading a on the input.

An element (p, a, A, q, α) δ is a ∈ transition of M.

 δ(p, a, A) → (q,α)

Pushdown Automata (2B) 7 Young Won Lim
6/28/18

Deterministic PDA (2) – transition function

https://en.wikipedia.org/wiki/Pushdown_automaton

δ is the transition function,

mapping Q × (Σ {ε}) × Γ ∪

into finite subsets of Q × Γ∗

Here δ (p, a, A) contains all possible actions in state p

with A on the stack, while reading a on the input.

One writes for example δ(p, a, A) = { (q, BA) }

precisely when (q, BA) { (q, BA) }, (q, BA) δ∈ ∈ (p, a, A)

Because ((p, a, A), {(q, BA)}) δ∈ .

Note that finite in this definition is essential.

 δ(p, a, A) → (q,α)

 δ(p, a, A) → (q,α)

Pushdown Automata (2B) 8 Young Won Lim
6/28/18

Deterministic PDA Example (1) – description

https://en.wikipedia.org/wiki/Pushdown_automaton

The following is the formal description of the PDA
which recognizes the language { 0n1n n ≥ 0 } by final state:∣

M = (Q, Σ, Γ, δ, q
0
, Z, F), where

states: Q = {p, q, r}
input alphabet: Σ = {0, 1}
stack alphabet: Γ = {A, Z}
start state: q

0
 = p

start stack symbol: Z
accepting states: F = {r}

Pushdown Automata (2B) 9 Young Won Lim
6/28/18

Deterministic PDA Example (2) – instructions

https://en.wikipedia.org/wiki/Pushdown_automaton

The transition relation δ consists of
the following six instructions:

 (p, 0, Z, p, AZ) 0; Z/AZ, p→p
 (p, 0, A, p, AA) 0; A/AA, p→p
 (p, , Z, q, Z)ϵ , Z/Z, p→qϵ
 (p, , A, q, A)ϵ , A/A, p→qϵ
 (q, 1, A, q,)ϵ 1, A/ , q→qϵ
 (q, , Z, r, Z)ϵ , Z/Z, p→rϵ

the instruction (p, a, A, q, α) by an edge from state p to state q
labelled by a ; A / α (read a; replace A by α).

Pushdown Automata (2B) 10 Young Won Lim
6/28/18

Deterministic PDA Example (3) – instruction description

https://en.wikipedia.org/wiki/Pushdown_automaton

in state p any time the symbol 0 is read,
one A is pushed onto the stack.
Pushing symbol A on top of another A is
formalized as replacing top A by AA
(and similarly for pushing symbol A on top of a Z)

at any moment the automaton may move
from state p to state q.

in state q, for each symbol 1 read,
one A is popped.

the machine may move from state q
to accepting state r
only when the stack consists of a single Z.

 (p, 0, Z, p, AZ) ,
 (p, 0, A, p, AA),

 (p, , Z, q, Z),ϵ
 (p, , A, q, A),ϵ

 (q, 1, A, q,), ϵ

 (q, , Z, r, Z). ϵ

Pushdown Automata (2B) 11 Young Won Lim
6/28/18

Deterministic PDA Computation (1) – ID

https://en.wikipedia.org/wiki/Pushdown_automaton

to formalize the semantics of the pushdown automaton

a description of the current situation is introduced.

Any 3-tuple (p , w , β) Q × Σ∈ ∗ × Γ∗ is called

an instantaneous description (ID) of

M = (Q, Σ, Γ, δ, q
0
, Z, F) which includes

the current state,

the part of the input tape that has not been read, and

 the contents of the stack (topmost symbol written first).

Pushdown Automata (2B) 12 Young Won Lim
6/28/18

Deterministic PDA Computation (2) – step-relation

https://en.wikipedia.org/wiki/Pushdown_automaton

The transition relation δ defines

the step-relation ⊢
M
 on instantaneous descriptions.

For instruction (p, a, A, q, α) δ ∈

there exists a step (p , ax, Aγ) M (q, x , αγ), ⊢

for every x Σ∈ ∗ and every γ Γ∈ ∗ .

p, q : states

ax, x : inputs

Ay, αγ : stack elementes

Pushdown Automata (2B) 13 Young Won Lim
6/28/18

Deterministic PDA Computation (3) – non-deterministic

https://en.wikipedia.org/wiki/Pushdown_automaton

Nondeterministic :

in a given instantaneous description (p, w, β)

there may be several possible steps.

Any of these steps can be chosen in a computation.

Pushdown Automata (2B) 14 Young Won Lim
6/28/18

Deterministic PDA Computation (4) – pop operation

https://en.wikipedia.org/wiki/Pushdown_automaton

With the above definition in each step always

a single symbol (top of the stack) is popped,

replacing it with as many symbols as necessary.

As a result no step is defined when the stack is empty.

Pushdown Automata (2B) 15 Young Won Lim
6/28/18

Deterministic PDA Computation (5) – initial description

https://en.wikipedia.org/wiki/Pushdown_automaton

Computations of the pushdown automaton are

sequences of steps.

The computation starts in the initial state q
0

with the initial stack symbol Z on the stack,

and a string w on the input tape,

thus with initial description (q
0
, w, Z).

Pushdown Automata (2B) 16 Young Won Lim
6/28/18

Deterministic PDA Computation (6) – acceptance modes

https://en.wikipedia.org/wiki/Pushdown_automaton

There are two modes of accepting.

either accepts by final state,

which means after reading its input the automaton
reaches an accepting state (in F)

uses the internal memory (state)

or it accepts by empty stack (ε),

which means after reading its input the automaton
empties its stack.

uses the external memory (stack).

Pushdown Automata (2B) 17 Young Won Lim
6/28/18

Computation Example (1)

https://en.wikipedia.org/wiki/Pushdown_automaton

The following illustrates
how the above PDA computes
on different input strings.

The subscript M from the step symbol
 ⊢ is here omitted.

Pushdown Automata (2B) 18 Young Won Lim
6/28/18

Computation Example (2)

https://en.wikipedia.org/wiki/Pushdown_automaton

input string = 0011.
There are various computations, depending on the moment
the move from state p to state q is made.
Only one of these is accepting.

(p , 0011 , Z) ⊢ (p, , Z, q, Z),ϵ
(q , 0011 , Z) ⊢ (q, , Z, r, Z).ϵ
(r , 0011 , Z)

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Pushdown Automata (2B) 19 Young Won Lim
6/28/18

Computation Example (3)

https://en.wikipedia.org/wiki/Pushdown_automaton

The final state is accepting, but the input is not accepted
this way as it has not been read.

(p , 0011 , Z) ⊢ (p, 0, Z, p, AZ)
(p , 011 , A Z) ⊢ (q, 1, A, q,) ϵ
(q , 011 , A Z)

No further steps possible.

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Pushdown Automata (2B) 20 Young Won Lim
6/28/18

Computation Example (4)

https://en.wikipedia.org/wiki/Pushdown_automaton

(p , 0011 , Z) ⊢ (p, 0, A, p, AA)
(p , 011 , AZ) ⊢ (p, 0, A, p, AA)
(p , 11 , AAZ) ⊢ (p, , A, q, A)ϵ
(q , 11 , AAZ) ⊢ (q, 1, A, q,) ϵ
(q , 1 , AZ) ⊢ (q, 1, A, q,) ϵ
(q , , Z) ϵ ⊢ (q, , Z, r, Z) ϵ
(r , , Z) ϵ

Accepting computation: ends in accepting state,
while complete input has been read.

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Pushdown Automata (2B) 21 Young Won Lim
6/28/18

Computation Example (5)

https://en.wikipedia.org/wiki/Pushdown_automaton

Input string = 00111. Again there are various computations.
None of these is accepting.

(p , 00111 , Z) ⊢ (p, , Z, q, Z)ϵ
(q , 00111 , Z) ⊢ (q, , Z, r, Z)ϵ
(r , 00111 , Z)

The final state is accepting,
but the input is not accepted
this way as it has not been read.

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Pushdown Automata (2B) 22 Young Won Lim
6/28/18

Computation Example (6)

https://en.wikipedia.org/wiki/Pushdown_automaton

(p , 00111 , Z) ⊢ (p, 0, Z, p, AZ)
(p , 0111 , A Z) ⊢ (p, , A, q, A)ϵ
(q , 0111 , A Z)

No further steps possible.

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Pushdown Automata (2B) 23 Young Won Lim
6/28/18

Computation Example (7)

https://en.wikipedia.org/wiki/Pushdown_automaton

(p , 00111 , Z) ⊢ (p, 0, Z, p, AZ)
(p , 0111 , A Z) ⊢ (p, 0, Z, p, AZ)
(p , 111 , A A Z) ⊢ (p, , A, q, A)ϵ
(q , 111 , A A Z) ⊢ (q, 1, A, q,) ϵ
(q , 11 , A Z) ⊢ (q, 1, A, q,) ϵ
(q , 1 , Z) ⊢ (q, , Z, r, Z)ϵ
(r , 1 , Z)

The final state is accepting, but the input is not accepted
this way as it has not been (completely) read.

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Pushdown Automata (2B) 24 Young Won Lim
6/28/18

PDA and Context Free Language (1)

https://en.wikipedia.org/wiki/Pushdown_automaton

Every context-free grammar can be transformed

into an equivalent nondeterministic pushdown automaton.

The derivation process of the grammar
is simulated in a leftmost way

Where the grammar rewrites a nonterminal,
the PDA takes the topmost nonterminal from its stack
and replaces it by the right-hand part
of a grammatical rule (expand).

Where the grammar generates a terminal symbol,
the PDA reads a symbol from input
when it is the topmost symbol on the stack (match).

In a sense the stack of the PDA contains
the unprocessed data of the grammar,
corresponding to a pre-order traversal of a derivation tree.

Pushdown Automata (2B) 25 Young Won Lim
6/28/18

PDA and Context Free Language (1)

https://en.wikipedia.org/wiki/Pushdown_automaton

Every context-free grammar can be transformed

into an equivalent nondeterministic pushdown automaton.

The derivation process of the grammar

is simulated in a leftmost way

In a sense the stack of the PDA contains

the unprocessed data of the grammar,

corresponding to a pre-order traversal of a derivation tree.

Pushdown Automata (2B) 26 Young Won Lim
6/28/18

PDA and Context Free Language (2)

https://en.wikipedia.org/wiki/Pushdown_automaton

The derivation process of the grammar

is simulated in a leftmost way

Where the grammar rewrites a nonterminal,

the PDA takes the topmost nonterminal from its stack

and replaces it by the right-hand part

of a grammatical rule (expand).

Where the grammar generates a terminal symbol,

the PDA reads a symbol from input

when it is the topmost symbol on the stack (match).

I

Pushdown Automata (2B) 27 Young Won Lim
6/28/18

Computation Example (3)

https://en.wikipedia.org/wiki/Pushdown_automaton

Technically, given a context-free grammar, the PDA has a
single state, 1, and its transition relation is constructed as
follows.

 (1 , ε , A , 1 , α) for each rule A → α (expand)
 (1 , a , a , 1 , ε) for each terminal symbol a (match)

Pushdown Automata (2B) 28 Young Won Lim
6/28/18

PDA and Context Free Language (2)

https://en.wikipedia.org/wiki/Pushdown_automaton

Technically, given a context-free grammar,

the PDA has a single state, 1,

and its transition relation is constructed as follows.

 (1 , ε , A , 1 , α) for each rule A → α (expand)

 (1 , a , a , 1 , ε) for each terminal symbol a (match)

The PDA accepts by empty stack.

Its initial stack symbol is the grammar's start symbol.

Young Won Lim
6/28/18

References

[1] http://en.wikipedia.org/
[2]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

