Automata Theory (2B)

PushDown Automata (PDA)

Copyright (c) 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Deterministic Pushdown Automaton (PDA)

Deterministic PDA (1) – transition relation

4

An element (p, a, A, q, α) $\in \delta$ is a **transition** of **M**.

```
in state p \in Q,
on the input a \in \Sigma \cup \{ \epsilon \} and
with A \in \Gamma as topmost stack symbol,
```

M may

- <u>read</u> **a**,
- change the state to q,
- <u>pop</u> A,
- <u>replacing</u> it by <u>pushing</u> $\alpha \in \Gamma^*$.

https://en.wikipedia.org/wiki/Pushdown_automaton

Pushdown Automata (2B)

Deterministic PDA (1) – input operations

```
on the input a \in \Sigma \cup \{ \varepsilon \}
```

the ($\Sigma \cup \{\epsilon\}$) component of the transition relationis used to formalize that the PDA caneither read a letter from the input, Σ Σ or proceed leaving the input untouched.

Deterministic PDA (2) – transition function

δ is the **transition function**,

mapping $Q \times (\Sigma \cup {\epsilon}) \times \Gamma$ into finite subsets of $Q \times \Gamma^*$

$$\delta(\mathsf{p},\,\mathsf{a},\,\mathsf{A})\,\rightarrow\,(\mathsf{q},\!\alpha)$$

Here δ (p, a, A) contains all possible actions in state p with A on the stack, while reading a on the input.

An element (p, a, A, q, α) $\in \delta$ is a **transition** of **M**.

Deterministic PDA (2) – transition function

δ is the **transition function**,

mapping $Q \times (\Sigma \cup {\epsilon}) \times \Gamma$ into finite subsets of $Q \times \Gamma^*$

$$\delta(p, a, A) \rightarrow (q, \alpha)$$

Here δ (p, a, A) contains all possible actions in **state** p with A on the **stack**, while reading a on the **input**.

One writes for example $\delta(p, a, A) = \{ (q, BA) \}$ precisely when $(q, BA) \in \{ (q, BA) \}, (q, BA) \in \delta(p, a, A)$ Because $((p, a, A), \{(q, BA)\}) \in \delta$. Note that finite in this definition is essential.

The following is the formal description of the PDA which recognizes the language { $0^n 1^n | n \ge 0$ } by final state:

8

 $M = (Q, \Sigma, \Gamma, \delta, q_0, Z, F), where$

states:	Q = {p, q, r}
input alphabet:	$\Sigma = \{0, 1\}$
stack alphabet:	Γ = {A, Z}
start state:	$q_0 = p$
start stack symbol:	Z
accepting states:	F = {r}

https://en.wikipedia.org/wiki/Pushdown_automaton

Pushdown Automata (2B)

Deterministic PDA Example (2) – instructions

The **transition relation** δ consists of the following six instructions:

(p, 0, Z, p, AZ)	0; Z/AZ, p→p
(p, 0, A, p, AA)	0; A/AA, p→p
(p, e, Z, q, Z)	ϵ , Z/Z, p \rightarrow q
(p, e, A, q, A)	€, A/A, p→q
(q, 1, A, q, ∈)	1, A/ ϵ , q \rightarrow q
$(\alpha \in 7 r 7)$	c 7/7 n→r

the instruction (p, a, A, q, α) by an edge from state p to state q labelled by a ; A / α (read a; replace A by α).

Deterministic PDA Example (3) – instruction description

(p, 0, Z, p, AZ) , (p, 0, A, p, AA),	in <u>state p any time the symbol 0 is read,</u> one A is <u>pushed</u> onto the stack. Pushing <u>symbol A on top of another A is</u> formalized as replacing top A by AA (and similarly for pushing <u>symbol A on top of a Z)</u>
(p, e, Z, q, Z), (p, e, A, q, A),	at any moment the automaton may <u>move</u> from <u>state</u> p to <u>state</u> q.
(q, 1, A, q, ∈),	in state q, for each <u>symbol</u> 1 read, one A is <u>popped</u> .
(q, e, Z, r, Z).	the machine may move from <u>state</u> q to <u>accepting state</u> r only when the <u>stack</u> consists of a <u>single</u> Z.

Deterministic PDA Computation (1) – ID

to formalize the **semantics** of the pushdown automaton a description of the current situation is introduced. Any 3-tuple (p , w , β) \in Q × Σ^* × Γ^* is called an **instantaneous description** (ID) of M = (Q, Σ , Γ , δ , q_0 , Z, F) which includes

the current **state**,

the part of the **input** tape that has not been read, and the contents of the **stack** (topmost symbol written first).

Deterministic PDA Computation (2) – step-relation

The transition relation δ defines the step-relation \vdash_{M} on instantaneous descriptions.

For instruction (p, a, A, q, α) $\in \delta$ there exists a step (p, ax, Ay) \vdash M (q, x, α y), for every $x \in \Sigma^*$ and every $y \in \Gamma^*$.

p, q : states

ax, x : inputs

Ay, $\alpha \gamma$: stack elementes

https://en.wikipedia.org/wiki/Pushdown_automaton

Pushdown Automata (2B)

Nondeterministic :

in a given **instantaneous description** (p, w, β)

there may be <u>several</u> possible **steps**.

Any of these steps can be chosen in a computation.

With the above definition <u>in each step</u> always a <u>single</u> **symbol** (**top** of the **stack**) is <u>popped</u>, <u>replacing</u> it with as <u>many</u> <u>symbols</u> as necessary.

As a result no step is defined when the stack is empty.

Deterministic PDA Computation (5) – initial description

Computations of the pushdown automaton are <u>sequences</u> of **steps**.

The computation starts in the **initial state** q_0 with the **initial stack symbol** Z on the stack, and a string w on the **input tape**, thus with **initial description** (q_0 , w, Z).

There are two modes of accepting.

either accepts by final state,

which means <u>after reading</u> its input the automaton <u>reaches</u> an **accepting state** (in F) uses the **internal memory** (**state**)

or it accepts by **empty stack** (ϵ),

which means <u>after reading</u> its input the automaton <u>empties</u> its stack.

uses the external memory (stack).

The following illustrates how the above PDA computes on different input strings.

The subscript M from the step symbol \vdash is here omitted.

17

https://en.wikipedia.org/wiki/Pushdown_automaton

Pushdown Automata (2B)

input string = 0011.

There are various computations, depending on the moment the move from state p to state q is made. Only one of these is accepting.

(p,0011,Z)⊢ (q,0011,Z)⊢ (r,0011,Z)

(p, 0, Z, p, AZ)
 (p, 0, A, p, AA)
 (p, ∈, Z, q, Z)
 (p, ∈, A, q, A)
 (q, 1, A, q, ∈)
 (q, ∈, Z, r, Z)

Computation Example (3)

The final state is accepting, but the input is not accepted this way as it has not been read.

 $(p, 0011, Z) \vdash$ (p, 0, Z, p, AZ) $(p, 011, AZ) \vdash$ $(q, 1, A, q, \epsilon)$ (q, 011, AZ) (p, 0, Z, p, AZ)
 (p, 0, A, p, AA)
 (p, ∈, Z, q, Z)
 (p, ∈, A, q, A)
 (q, 1, A, q, ∈)
 (q, ∈, Z, r, Z)

No further steps possible.

Computation Example (4)

(p , 0011 , Z) ⊢
(p,011,AZ)⊢
(p , 11 , AAZ) ⊢
(q, 11, AAZ)⊢
(q,1,AZ)⊢
(q, ∈, Z)⊢
(r, e, Z)

(p, 0, A, p, AA) (p, 0, A, p, AA) (p, e, A, q, A) (q, 1, A, q, e) (q, 1, A, q, e) (q, e, Z, r, Z)

(p, 0, Z, p, AZ)
 (p, 0, A, p, AA)
 (p, ∈, Z, q, Z)
 (p, ∈, A, q, A)
 (q, 1, A, q, ∈)
 (q, ∈, Z, r, Z)

Accepting computation: ends in accepting state, while complete input has been read.

20

https://en.wikipedia.org/wiki/Pushdown_automaton

Pushdown Automata (2B)

Computation Example (5)

Input string = 00111. Again there are various computations. None of these is accepting.

(p,00111,Z)⊢ (q,00111,Z)⊢ (r,00111,Z) (p, e, Z, q, Z) (q, e, Z, r, Z) (p, 0, Z, p, AZ)
 (p, 0, A, p, AA)
 (p, ∈, Z, q, Z)
 (p, ∈, A, q, A)
 (q, 1, A, q, ∈)
 (q, ∈, Z, r, Z)

The final state is accepting, but the <u>input</u> is <u>not accepted</u> this way as it has <u>not been read</u>.

Computation Example (6)

(p,00111,Z)⊢ (p,0111,AZ)⊢ (q,0111,AZ)

No further steps possible.

(p, 0, Z, p, AZ) (p, є, A, q, A) (p, 0, Z, p, AZ)
 (p, 0, A, p, AA)
 (p, ∈, Z, q, Z)
 (p, ∈, A, q, A)
 (q, 1, A, q, ∈)
 (q, ∈, Z, r, Z)

Computation Example (7)

(p , 00111 , Z) ⊢	
(p,0111,AZ)⊢	
(p,111,AAZ)⊢	
(q,111,AAZ)⊢	
(q,11,AZ)⊢	
(q,1,Z)⊢	
(r,1,Z)	

(p, 0, Z, p, AZ) (p, 0, Z, p, AZ) (p, e, A, q, A) (q, 1, A, q, e) (q, 1, A, q, e) (q, e, Z, r, Z) (p, 0, Z, p, AZ)
 (p, 0, A, p, AA)
 (p, ∈, Z, q, Z)
 (p, ∈, A, q, A)
 (q, 1, A, q, ∈)
 (q, ∈, Z, r, Z)

The final state is accepting, but the input is <u>not accepted</u> this way as it has <u>not</u> been (<u>completely</u>) <u>read</u>.

Every **context-free grammar** can be transformed into an equivalent **nondeterministic pushdown automaton**.

The derivation process of the grammar is simulated in a **leftmost way**

Where the grammar <u>rewrites</u> a **nonterminal**, the **PDA** <u>takes</u> the **topmost nonterminal** from its **stack** and <u>replaces</u> it by the **right-hand part** of a grammatical rule (expand).

Where the grammar generates a **terminal** symbol, the **PDA** <u>reads</u> a symbol from **input** when it is the **topmost symbol** on the **stack** (match).

In a sense the **stack** of the **PDA** contains the <u>unprocessed</u> data of the grammar, corresponding to a <u>pre-order</u> traversal of a derivation tree.

PDA and Context Free Language (1)

Every **context-free grammar** can be transformed into an equivalent **nondeterministic pushdown automaton**.

The derivation process of the grammar is simulated in a **leftmost way**

In a sense the **stack** of the **PDA** contains the unprocessed data of the grammar, corresponding to a pre-order traversal of a derivation tree.

PDA and Context Free Language (2)

The derivation process of the grammar

is simulated in a **leftmost way**

Where the grammar <u>rewrites</u> a **nonterminal**, the **PDA** takes the **topmost nonterminal** from its **stack** and replaces it by the **right-hand part** of a grammatical rule (**expand**).

Where the grammar generates a **terminal** symbol, the **PDA** <u>reads</u> a symbol from input when it is the **topmost symbol** on the **stack** (**match**).

Technically, given a context-free grammar, the PDA has a single state, 1, and its transition relation is constructed as follows.

(1, ϵ , A, 1, α) for each rule A $\rightarrow \alpha$ (expand) (1, a, a, 1, ϵ) for each terminal symbol a (match)

PDA and Context Free Language (2)

Technically, given a context-free grammar, the PDA has a <u>single</u> **state**, 1, and its **transition relation** is constructed as follows.

(1, ϵ , A, 1, α) for each rule A $\rightarrow \alpha$ (expand) (1, a, a, 1, ϵ) for each terminal symbol a (match)

The PDA accepts by empty stack.

Its initial stack symbol is the grammar's start symbol.

References

