
Young Won Lim
5/24/18

Graph Search (6A)

Young Won Lim
5/24/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

mailto:youngwlim@hotmail.com

Graph Search (6A) 3 Young Won Lim
5/24/18

Graph Traversal

https://en.wikipedia.org/wiki/Graph_traversal

graph traversal (graph search) refers to
the process of visiting (checking and/or updating)
each vertex in a graph.

Such traversals are classified
by the order in which the vertices are visited.

Tree traversal is a special case of graph traversal.

Graph Search (6A) 4 Young Won Lim
5/24/18

DFS

https://en.wikipedia.org/wiki/Graph_traversal

A depth-first search (DFS)
is an algorithm for traversing a finite graph.

DFS visits the child vertices
before visiting the sibling vertices;

that is, it traverses the depth of any particular path
before exploring its breadth.

A stack (often the program's call stack via recursion) is
generally used when implementing the algorithm.

Graph Search (6A) 5 Young Won Lim
5/24/18

DFS Backtrack

https://en.wikipedia.org/wiki/Graph_traversal

The algorithm begins with a chosen "root" vertex;

it then iteratively transitions from the current vertex to an
adjacent, unvisited vertex, until it can no longer find an
unexplored vertex to transition to from its current location.

The algorithm then backtracks along previously visited
vertices, until it finds a vertex connected to yet more
uncharted territory.

It will then proceed down the new path as it had before,
backtracking as it encounters dead-ends, and ending only
when the algorithm has backtracked past the original "root"
vertex from the very first step.

Graph Search (6A) 6 Young Won Lim
5/24/18

BFS

https://en.wikipedia.org/wiki/Graph_traversal

A breadth-first search (BFS) is
another technique for traversing a finite graph.

BFS visits the neighbor vertices
before visiting the child vertices

a queue is used in the search process

This algorithm is often used to find
the shortest path from one vertex to another.

Graph Search (6A) 7 Young Won Lim
5/24/18

Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

Graph Search (6A) 8 Young Won Lim
5/24/18

Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

Graph Search (6A) 9 Young Won Lim
5/24/18

General Graph Search Algorithm – 1

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Search(Start, isGoal, Criteria)
insert(Start, Open);
repeat

if (empty(Open)) then return fail;
select node from Open using Criteria;
mark node as visited;
if (isGoal(node)) then return node;
for each child of node do

if (child not already visited)
then insert(child, Open);

Graph Search (6A) 10 Young Won Lim
5/24/18

DFS

OPEN

x

1 2 3

3 1

2

2x

CLOSED

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

pop

push

unvisited children : 1, 3

“visited”

Graph Search (6A) 11 Young Won Lim
5/24/18

BFS

y

ba

ba

OPEN

c

cy

CLOSED

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

c

deQ

enQ

unvisited children : 1, 3

marked “ visited”

Graph Search (6A) 12 Young Won Lim
5/24/18

Possible duplication

DFS BFS Stack Queue

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

possible duplication
- not yet expanded

possible duplication
- not yet expanded

Graph Search (6A) 13 Young Won Lim
5/24/18

Must check before expansion

DFS BFS Stack Queue

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

must check if the selected
node is already “visited”

must check if the selected
node is already “visited”

possible duplication possible duplication

must not
expanded
twice

must not
expanded
twice

Graph Search (6A) 14 Young Won Lim
5/24/18

General Graph Search Algorithm – 1

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Search(Start, isGoal, Criteria)
insert(Start, Open);
repeat

if (empty(Open)) then return fail;
select node from Open using Criteria;
mark node as visited;
if (isGoal(node)) then return node;
for each child of node do

if (child not already visited)
then insert(child, Open);

Remedy 1:
check if visited when selecting

Remedy 2:
check redundant nodes

Graph Search (6A) 15 Young Won Lim
5/24/18

DFS-1 (Depth First Search)

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Open list – use a stack
Select with Criteria – pop

DFS(Start, isGoal)
push(Start, Open); // push
repeat

if (empty(Open)) then return fail;
node := pop(Open); // pop
mark node as visited;
if (isGoal(node)) then return node;
for each child of node do

if (child not already visited) then
push(child, Open); // push

Graph Search (6A) 16 Young Won Lim
5/24/18

DFS-1 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cba cbbed cbbeeh

cbbeei cbbeef cbbeegbe

a d h

i f e

push

push push

push

push
push

pop pop pop

pop pop pop

Graph Search (6A) 17 Young Won Lim
5/24/18

DFS-1 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cbbeegb cbbeegc cbbeegg

cbbeeg

b c g

c,b,b,e,e,g all marked

a

d h

ie

fb

gc

s

push push

pop pop pop

pop

Graph Search (6A) 18 Young Won Lim
5/24/18

BFS-1 (Breadth First Search)

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Open list – use a FIFO
Select with Criteria – dequeue

BFS(Start, isGoal)
enqueue(Start, Open); // enqueue
repeat

if (empty(Open)) then return fail;
node := dequeue(Open); // dequeue
mark node as visited;
if (isGoal(node)) then return node;
for each child of node do

if (child not already visited) then
enqueue(child, Open); // enqueue

Graph Search (6A) 19 Young Won Lim
5/24/18

BFS-1 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

abc bcdeb cdebfc

debfcg ebfcghe bfcghef

a b c
deQ deQ deQ

d e b,f
deQ deQ deQ

enQ
enQ

enQ

enQ

enQ

enQ

Graph Search (6A) 20 Young Won Lim
5/24/18

BFS-1 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cghefig hefig efigi

gi

c,g h e,f,i
deQ deQ deQ

g,i
deQ

a

d h

ie

fb

gc

s

Graph Search (6A) 21 Young Won Lim
5/24/18

General Graph Search Algorithm – 2

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows:
unmark all nodes in N;
mark node s;
pred(s) = 0; {that is, it has no predecessor}
LIST = {s}

while LIST ≠ ø do
select a node i in LIST;
if node j is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
add node j to the end of LIST;

else
delete node i from LIST

DFS : select the last node i in LIST;

BFS : select the first node i in LIST; enQdeQ

push
pop

Graph Search (6A) 22 Young Won Lim
5/24/18

Admissible arc

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

pred(j) is a node that precedes j on some path from s;

A node is either marked or unmarked.

Initially only node s is marked.

If a node is marked, it is reachable from node s.

An arc (i,j) A is ∈ admissible
if node i is marked and j is not.

j

i

k

s

marked

unmarked

m

Graph Search (6A) 23 Young Won Lim
5/24/18

LIST

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Before a node is added into LIST,
the node is marked

LIST contains only the marked nodes

thus, the selected node i is marked already

The node j incident to the admissible arc(i,j)
must be unmarked

This node j is marked and added into LIST

In this way, LIST contains
only marked and non-repeating nodes

Check before inserting

j

i

k

s

marked

unmarked

m

Graph Search (6A) 24 Young Won Lim
5/24/18

DFS-2

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows:
unmark all nodes in N;
mark node s;
pred(s) = 0; {that is, it has no predecessor}
push s onto LIST

while LIST ≠ ø do
pop a node i from LIST;
if node j is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
push(node j) onto LIST;

else
delete node i from LIST

Graph Search (6A) 25 Young Won Lim
5/24/18

DFS-2 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cba cbed cbeh

cbei cbef cbeg

a d h

i f g

push

push push

push

push
push

pop pop pop

pop pop pop

Graph Search (6A) 26 Young Won Lim
5/24/18

DFS-2 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cbe cb ce b c

a

d h

ie

fb

gc

s

pop pop pop

a

d h

ie

fb

gc

s

Graph Search (6A) 27 Young Won Lim
5/24/18

BFS-2

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows:
unmark all nodes in N;
mark node s;
pred(s) = 0; {that is, it has no predecessor}
enqueue s onto LIST

while LIST ≠ ø do
dequeue node i from LIST;
if node j is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
enqueue node j onto LIST;

else
delete node i from LIST

Graph Search (6A) 28 Young Won Lim
5/24/18

BFS-2 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

abc bcde cdef

defg efgh fgh

a b c
deQ deQ deQ

d e f
deQ deQ deQ

enQ
enQ

enQ

enQ

enQ

Graph Search (6A) 29 Young Won Lim
5/24/18

BFS-2 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

ghi hi ig h i
deQ deQ deQ

deQ

a

d h

ie

fb

gc

s

enQ

Graph Search (6A) 30 Young Won Lim
5/24/18

DFS Pseudocode

https://en.wikipedia.org/wiki/Graph_traversal

1 procedure DFS(G, v):
2 label v as explored
3 for all edges e in G.incidentEdges(v) do
4 if edge e is unexplored then
5 w ← G.adjacentVertex(v, e)
6 if vertex w is unexplored then
7 label e as a discovered edge
8 recursively call DFS(G, w)
9 else
10 label e as a back edge

Graph Search (6A) 31 Young Won Lim
5/24/18

BFS Pseudocode

https://en.wikipedia.org/wiki/Graph_traversal

1 procedure BFS(G, v):
2 create a queue Q
3 enqueue v onto Q
4 mark v
5 while Q is not empty:
6 t ← Q.dequeue()
7 if t is what we are looking for:
8 return t
9 for all edges e in G.adjacentEdges(t) do
12 o ← G.adjacentVertex(t, e)
13 if o is not marked:
14 mark o
15 enqueue o onto Q
16 return null

Young Won Lim
5/24/18

References

[1] http://en.wikipedia.org/
[2]

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32

