Hamiltonian Cycle (3A)

Young Won Lim 6/28/18 Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

A Hamiltonian path is a path in an undirected or directed graph that visits **each vertex** exactly **once**.

A Hamiltonian cycle is a Hamiltonian path that is a cycle.

the Hamiltonian path problem is NP-complete.

4

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A)

Young Won Lim 6/28/18

- a **complete graph** with more than two vertices is Hamiltonian
- every cycle graph is Hamiltonian
- every **tournament** has an odd number of Hamiltonian paths
- every **platonic solid**, considered as a graph, is Hamiltonian
- the Cayley graph of a finite Coxeter group is Hamiltonian

Complete Graphs and Cycle Graphs

7

https://en.wikipedia.org/wiki/Complete_graph https://en.wikipedia.org/wiki/Cycle_graph

Hamiltonian Cycles (3A)

Young Won Lim 6/28/18

Complete Graphs

8

https://en.wikipedia.org/wiki/Complete_graph

Tournament Graphs

https://en.wikipedia.org/wiki/Tournament_(graph_theory

Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron
Four faces	Six faces	Eight faces	Twelve faces	Twenty faces
(Animation)	(Animation)	(Animation)	(Animation)	(Animation)
(3D model)	(3D model)	(3D model)	(3D model)	(3D model)

https://en.wikipedia.org/wiki/Platonic_solid

Any **Hamiltonian cycle** can be converted to a **Hamiltonian path** by removing one of its edges,

but a **Hamiltonian path** can be extended to **Hamiltonian cycle** only if its endpoints are adjacent.

All **Hamiltonian graphs** are **biconnected**, but a biconnected graph need not be Hamiltonian

a biconnected graph is a connected and "nonseparable" graph, meaning that if any one **vertex** were to be removed, the graph will remain connected.

a biconnected graph has no articulation vertices.

The property of being **2-connected** is equivalent to **biconnectivity**, with the caveat that the complete graph of two vertices is sometimes regarded as biconnected but not 2-connected.

https://en.wikipedia.org/wiki/Biconnected_graph

Biconnected Graph Examples

A biconnected graph on four vertices and four edges A graph that is not biconnected. The removal of vertex x would disconnect the graph. A biconnected graph on five vertices and six edges ×

A graph that is not biconnected. The removal of vertex x would disconnect the graph.

https://en.wikipedia.org/wiki/Biconnected_graph

An Eulerian graph G : a connected graph in which every vertex has even degree

An **Eulerian graph** G necessarily has an **Euler cycle**, a closed walk passing through each **edge** of G exactly **once**.

Eulerian Graph (1)

The Eulerian cycle corresponds to a Hamiltonian cycle in the line graph L(G), so the line graph of every Eulerian graph is Hamiltonian graph.

Eulerian Graph (2)

The Eulerian cycle corresponds to a Hamiltonian cycle in the line graph L(G), so the line graph of every Eulerian graph is Hamiltonian graph.

The Eulerian path corresponds to a Hamiltonian path in the line graph L(G)

Line graphs may have <u>other</u> Hamiltonian cycles that do <u>not</u> correspond to Euler cycles.

Line graphs may have <u>other</u> Hamiltonian cycles that do <u>not</u> correspond to Euler cycles.

This Eulerian cycle corresponds to a Hamiltonian cycle in the line graph L(G), so the line graph of every Eulerian graph is Hamiltonian graph.

Line graphs may have other Hamiltonian cycles that do not correspond to Euler paths.

The **line graph** L(G) of every **Hamiltonian graph** G is itself **Hamiltonian**, regardless of whether the graph G is **Eulerian**.

In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G.

Given a graph G, its line graph L(G) is a graph such that

- each vertex of L(G) represents an edge of G; and
- two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint ("are incident") in G.

That is, it is the **intersection graph** of the **edges** of G, representing each edge by the set of its two endpoints.

https://en.wikipedia.org/wiki/Line_graph

Line Graphs Examples

https://en.wikipedia.org/wiki/Line_graph

A tournament (with more than two vertices) is Hamiltonian if and only if it is **strongly connected**.

The number of different Hamiltonian cycles in a **complete undirected** graph on **n** vertices is **(n – 1)! / 2** in a complete directed graph on n vertices is (n – 1)!.

These counts assume that cycles that are the same apart from their starting point are not counted separately.

Number of Hamiltonian Cycles (1)

$$(5-1)!=24$$

https://en.wikipedia.org/wiki/Hamiltonian_path

Α	BCDE	AB	CDE	ABC	DE	ABCD	E	ABCDE
				ABD	CE	ABCE	D	ABCED
		AC	BDE	ABE	CD	ABDC	E	ABDCE
						ABDE	С	ABDEC
		AD	BCE	ACB	DE	ABEC	D	ABECD
				ACD	BE	ABED	С	ABEDC
		AE	BCD	ACE	BD			
						ACBD	\boldsymbol{E}	ACBDE
				ADB	CE	ACBE	D	ACBED
				ADC	BE	ACDB	E	ACDBE
				ADE	BC	ACDE	В	ACDEB
						ACEB	D	ACEBD
				AEB	CD	ACED	В	ACEDB
				AEC	BD			
				AED	BC	ADBC	E	ADBCE
						ADBE	С	ADBEC
						ADCB	E	ADCBE
						ADCE	В	ADCEB
						ADEB	С	ADEBC
						ADEC	В	ADECB
						AEBC	D	AEBCD
						AEBD	С	AEBDC
						AECB	D	AECBD
						AECD	В	AECDB
						AEDB	С	AEDBC
						AEDC	В	AEDCB

Number of Hamiltonian Cycles (2)

(5-1)!=24

https://en.wikipedia.org/wiki/Hamiltonian_path

ABCDE	BACDE	CABDE	DABCE	EABCD
ABCED	BACED	CABED	DABEC	EABDC
ABDCE	BADCE	CADBE	DACBE	EACBD
ABDEC	BADEC	CADEB	DACEB	EACDB
ABECD	BAECD	CAEBD	DADBC	EADBC
ABEDC	BAEDC	CAEDB	DADCB	EADCB
ACBDE	BCADE	CBADE	DBACE	EBACD
ACBED	BCAED	CBAED	DBAEC	EBADC
ACDBE	BCDAE	CBDAE	DBCAE	EBCAD
ACDEB	BCDEA	CBDEA	DBCEA	EBCDA
ACEBD	BCEAD	CBEAD	DBEAC	EBDAC
ACEDB	BCEDA	CBEDA	DBECA	EBDCA
ADBCE	BDACE	CDABE	DCABE	ECABD
ADBEC	BDAEC	CDAEB	DCAEB	ECADB
ADCBE	BDCAE	CDBAE	DCBAE	ECBAD
ADCEB	BDCEA	CDBEA	DCBEA	ECBDA
ADEBC	BDEAC	CDEAB	DCEAB	ECDAB
ADECB	BDECA	CDEBA	DCEBA	ECDBA
AEBCD	BEACD	CEABD	DEABC	EDABC
AEBDC	BEADC	CEADB	DEACB	EDACB
AECBD	BECAD	CEBAD	DEBAC	EDBAC
AECDB	BECDA	CEBDA	DEBCA	EDBCA
AEDBC	BEDAC	CEDAB	DECAB	EDCAB
AEDCB	BEDCA	CEDBA	DECBA	EDCBA

Number of Hamiltonian Cycles (3)

$$\frac{(5-1)!}{2} = \frac{24}{2} = 12$$

https://en.wikipedia.org/wiki/Hamiltonian_path

ABCDE ABCED ABDCE ABDEC ABECD ABEDC ACBDE ACBED ACDBE ACDEB ACEBD ACEDB **ADBCE ADBEC ADCBE ADCEB** ADEBC **ADECB** AEBCD AEBDC AECBD AECDB AEDBC AEDCB

$$A-B-C-D-E-A$$

$$A-B-C-E-D-A$$

$$A-B-D-C-E-A$$

(n - 1)! / 2

Number of Hamiltonian Cycles (4)

A	\backslash
B	
\setminus	X/
C C	

$$\frac{(5-1)!}{2} = \frac{24}{2} = 12$$

https://en.wikipedia.org/wiki/Hamiltonian_path

ABCDE	A <mark>B</mark> CDE	ABCDE
ABCED	ABCED	ABCED
ABDCE	ABDCE	ABDCE
ABDEC	ABDEC	ABDEC
ABECD	A <mark>B</mark> ECD	ABECD
ABEDC	A <mark>B</mark> EDC	ABEDC
ACBDE	ACBDE	ACBDE
ACBED	ACBED	ACBED
ACDBE	ACDBE	ACDBE
ACDEB	ACDEB	ACEBD
ACEBD	ACEBD	ADBCE
ACEDB	ACEDB	ADCBE
ADBCE ADBEC ADCBE ADCEB ADEBC ADECB	ADBCE ADBEC ADCBE ADCEB ADEBC ADECB	
AEBCD AEBDC AECBD AECDB AEDBC AEDCB	AEBCD AEBDC AECBD AECDB AEDBC AEDC <mark>B</mark>	

(n – 1)! / 2

No Hamiltonian Cycle

No Hamiltonian Cycle

No Hamiltonian Cycle

Hamiltonian Cycle

Ross

a directed graph is said to be **strongly connected** or **diconnected** if every **vertex** is reachable from every other **vertex**.

The strongly connected components or diconnected components of an arbitrary directed graph form a partition into subgraphs that are themselves strongly connected.

Graph with strongly connected components marked

a directed graph is **strongly connected** if there is a **path** from **a** to **b** and from **b** to **a** whenever **a** and **b** are **vertices** in the graph

a directed graph is **weakly connected** if there is a **path** between every two **vertices** in the underlying undirected graph (either way) directions of edges are disregarded

Discrete Mathematics, Rosen

SC examples (1)

Hamiltonian Cycles (3A)

Young Won Lim 6/28/18

Discrete Mathematics, Rosen

SC examples (2)

Discrete Mathematics, Rosen

Hamiltonian Cycles (3A)

Young Won Lim 6/28/18

SCC and WCC examples

three strongly connected components

one weakly connected components

Discrete Mathematics, Rosen

References

