Boolean Algebra (8A)

Young Won Lim 3/30/18 Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Argument

Boolean Algebra

In mathematics and mathematical logic, **Boolean algebra** is the branch of algebra in which the values of the variables are the truth values *true* and *false*, usually denoted 1 and 0 respectively. Instead of elementary algebra where the values of the variables are numbers, and the prime operations are addition and multiplication, the main operations of Boolean algebra are the conjunction *and* denoted as Λ , the disjunction *or* denoted as ν , and the negation *not* denoted as \neg . It is thus a formalism for describing logical relations in the same way that ordinary algebra describes numeric relations.

x	y	$x \wedge y$	$x \lor y$	x	$\neg x$
0	0	0	0	0	1
1	0	0	1	1	0
0	1	0	1		
1	1	1	1		

x	y	x ightarrow y	$x\oplus y$	$x\equiv y$
0	0	1	0	1
1	0	0	1	0
0	1	1	1	0
1	1	1	0	1

https://en.wikipedia.org/wiki/Boolean_algebra

Laws (1)

Associativity of \lor :	:
Associativity of \wedge :	í
Commutativity of \lor :	
Commutativity of \wedge :	
Distributivity of \land over \lor :	:
Identity for \lor :	
Identity for \wedge :	
Annihilator for \wedge :	

x+(y+z) = (x+y)+z $x \lor (y \lor z) = (x \lor y) \lor z$ x(yz) = (xy)z $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ x+y = y+x $x \lor y = y \lor x$ xy = yz $x \wedge y = y \wedge x$ x(y+z) = xy + xz $x \wedge (y \lor z) = (x \wedge y) \lor (x \wedge z)$ x+0=x $x \vee 0 = x$ x*1=x $x \wedge 1 = x$ x*0=0 $x \wedge 0 = 0$

https://en.wikipedia.org/wiki/Boolean_algebra

Logic (8A) Boolean Algebra

6

Annihilator for \lor :	$x \lor 1 = 1$	x+1=1
Idempotence of \lor :	$x \lor x = x$	x+x=x
Idempotence of \wedge :	$x \wedge x = x$	x*x=x
Absorption 1:	$x \wedge (x \vee y) = x$	x(x+y)=x
Absorption 2:	$x \vee (x \wedge y) = x$	x+xy=x
Distributivity of \lor over \land :	$x \lor (y \land z) = (x \lor y) \land (x \lor z)$	x+yz=(x+y)(x+z)

Complementation 1	$x \wedge eg x = 0$	$x \overline{x} = 0$
Complementation 2	$x \lor eg x = 1$	$x + \overline{x} = 1$
-		
De Morgan 1	$ eg x \wedge eg y = eg (x \lor y)$	$\overline{x}\overline{y} = \overline{(x+y)}$
${ m De Morgan } 2$	$ eg x \lor eg y = eg (x \land y)$	$\overline{x} + \overline{y} = \overline{(x \ y)}$

https://en.wikipedia.org/wiki/Boolean_algebra

Digital logic is the application of the Boolean algebra of 0 and 1 to electronic hardware consisting of logic gates connected to form a circuit diagram. Each gate implements a Boolean operation, and is depicted schematically by a shape indicating the operation. The shapes associated with the gates for conjunction (AND-gates), disjunction (OR-gates), and complement (inverters) are as follows.^[17]

The lines on the left of each gate represent input wires or *ports*. The value of the input is represented by a voltage on the lead. For so-called "active-high" logic, 0 is represented by a voltage close to zero or "ground", while 1 is represented by a voltage close to the supply voltage; active-low reverses this. The line on the right of each gate represents the output port, which normally follows the same voltage conventions as the input ports.

https://en.wikipedia.org/wiki/Boolean_algebra

https://en.wikipedia.org/wiki/Logic_gate

https://en.wikipedia.org/wiki/Logic_gate

NAND, NOR Gates

https://en.wikipedia.org/wiki/Logic_gate

XOR, XNOR Gates

https://en.wikipedia.org/wiki/Logic_gate

CMOS Logic Gates

https://en.wikipedia.org/wiki/CMOS

Identity and Null Element Theorem

Distributive

$$x \cdot (y + z) = x \cdot y + x \cdot z \qquad \neq x \cdot y + z$$

This parenthesis cannot be deleted

$$x + (y \cdot z) = (x + y) \cdot (x + z) = x + y \cdot z$$

This parenthesis can be deleted

Operator precedence : • > +

https://en.wikiversity.org/wiki/Discrete_Mathematics_in_plain_view#Algorithms

Logic (8A)
Boolean Algebra

Inclusion

https://en.wikiversity.org/wiki/Discrete_Mathematics_in_plain_view#Algorithms

Logic (8A)
Boolean Algebra

Inclusion

https://en.wikiversity.org/wiki/Discrete_Mathematics_in_plain_view#Algorithms

Logic (8A) Boolean Algebra

17

Young Won Lim 3/30/18

Eliminate

$$x \cdot (\overline{x} + y) = x y$$

$$x \cdot (\overline{x} + y) = x \cdot \overline{x} + x \cdot y$$

$$= 0 + x \cdot y$$

$$= x \cdot y$$

$$x + \overline{x} y = x + y$$

$$x + \overline{x} y = (x + \overline{x}) \cdot (x + y)$$

$$= 1 \cdot (x + y)$$

$$= x + y$$

https://en.wikiversity.org/wiki/Discrete_Mathematics_in_plain_view#Algorithms

y

 $\overline{x} + y$

Logic (8A) Boolean Algebra

Young Won Lim 3/30/18

References

