Eulerian Cycle (2A)

Young Won Lim 5/25/18 Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Degree of a vertex

the **degree** (or **valency**) of a vertex is the number of edges <u>incident</u> to the vertex, with loops counted twice.

The degree of a vertex v is denoted deg(v) the maximum degree of a graph G, denoted by $\Delta(G)$ the minimum degree of a graph, denoted by $\delta(G)$

 $\begin{array}{l} \Delta(G)=5\\ \delta(G)=0 \end{array}$

In a regular graph, all degrees are the same

https://en.wikipedia.org/wiki/Degree_(graph_theory)

a **regular graph** is a graph where each vertex has the <u>same number</u> of <u>neighbors</u>; i.e. every vertex has the <u>same degree</u> or valency.

https://en.wikipedia.org/wiki/Regular_graph

Eulerian Cycles (2A)

Handshake Lemma

The degree sum formula states that, given a graph G = (V, E)

$$\sum_{v\in V} \deg(v) = 2|E|$$
 .

This statement (as well as the degree sum formula) is known as the **handshaking lemma**.

deg(a) = 1	
deg(b) = 3	
deg(c) = 3	
deg(d) = 2	
deg(e) = 5	
deg(f) = 2	
deg(g) = 0	E = 8
16	2 E = 16

https://en.wikipedia.org/wiki/Degree_(graph_theory)

Eulerian Cycles (2A)

Adding odd vertex

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A)

The number of odd vertices

Even vertices :
$$\{x_1, x_2, \dots, x_m\}$$
Odd vertices : $\{y_1, y_2, \dots, y_n\}$ $S = \underline{deg(x_1)} + \underline{deg(x_2)} + \dots + \underline{deg(x_m)}$ $T = \underline{deg(y_1)} + \underline{deg(y_2)} + \dots + \underline{deg(y_n)}$ $deg(x_i)$: even $T = \underline{odd} + \underline{odd} + \dots + \underline{odd}$ $S = \underline{even} + \underline{even} + \dots + \underline{even}$ $T = \underline{odd} + \underline{odd} + \dots + \underline{odd}$

in any graph, the number of vertices with <u>odd degree</u> is <u>even</u>.

# of odd vertices	Eulerian Path	Eulerian Cycle
0	No	Yes
2	Yes	No
4,6,8,	No	No
1,3,5,7,	No such graph	No such graph

References

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

A tournament (with more than two vertices) is Hamiltonian if and only if it is **strongly connected**.

The number of different Hamiltonian cycles in a **complete undirected** graph on **n** vertices is **(n – 1)! / 2** in a complete directed graph on n vertices is (n – 1)!.

These counts assume that cycles that are the same apart from their starting point are not counted separately.

https://en.wikipedia.org/wiki/Hamiltonian_path

Number of Hamiltonian Cycles (1)

$$(5-1)!=24$$

https://en.wikipedia.org/wiki/Hamiltonian_path

A	BCDE	AB	CDE	ABC	DE	ABCD	E	ABCDE
				ABD	CE	ABCE	D	ABCED
		AC	BDE	ABE	CD	ABDC	\boldsymbol{E}	ABDCE
						ABDE	С	ABDEC
		AD	BCE	ACB	DE	ABEC	D	ABECD
				ACD	BE	ABED	С	ABEDC
		AE	BCD	ACE	BD			
						ACBD	E	ACBDE
				ADB	CE	ACBE	D	ACBED
				ADC	BE	ACDB	E	ACDBE
				ADE	BC	ACDE	В	ACDEB
						ACEB	D	ACEBD
				AEB	CD	ACED	В	ACEDB
				AEC	BD			
				AED	BC	ADBC	\boldsymbol{E}	ADBCE
						ADBE	С	ADBEC
						ADCB	E	ADCBE
						ADCE	В	ADCEB
						ADEB	С	ADEBC
						ADEC	В	ADECB
						AEBC	D	AEBCD
						AEBD	С	AEBDC
						AECB	D	AECBD
						AECD	В	AECDB
						AEDB	С	AEDBC
						AEDC	В	AEDCB

Number of Hamiltonian Cycles (2)

(5-1)!=24

https://en.wikipedia.org/wiki/Hamiltonian_path

ABCDE	BACDE	CABDE	DABCE	EABCD
ABCED	BACED	CABED	DABEC	EABDC
ABDCE	BADCE	CADBE	DACBE	EACBD
ABDEC	BADEC	CADEB	DACEB	EACDB
ABECD	BAECD	CAEBD	DADBC	EADBC
ABEDC	BAEDC	CAEDB	DADCB	EADCB
ACBDE	BCADE	CBADE	DBACE	EBACD
ACBED	BCAED	CBAED	DBAEC	EBADC
ACDBE	BCDAE	CBDAE	DBCAE	EBCAD
ACDEB	BCDEA	CBDEA	DBCEA	EBCDA
ACEBD	BCEAD	CBEAD	DBEAC	EBDAC
ACEDB	BCEDA	CBEDA	DBECA	EBDCA
ADBCE	BDACE	CDABE	DCABE	ECABD
ADBEC	BDAEC	CDAEB	DCAEB	ECADB
ADCBE	BDCAE	CDBAE	DCBAE	ECBAD
ADCEB	BDCEA	CDBEA	DCBEA	ECBDA
ADEBC	BDEAC	CDEAB	DCEAB	ECDAB
ADECB	BDECA	CDEBA	DCEBA	ECDBA
AEBCD	BEACD	CEABD	DEABC	EDABC
AEBDC	BEADC	CEADB	DEACB	EDACB
AECBD	BECAD	CEBAD	DEBAC	EDBAC
AECDB	BECDA	CEBDA	DEBCA	EDBCA
AEDBC	BEDAC	CEDAB	DECAB	EDCAB
AEDCB	BEDCA	CEDBA	DECBA	EDCBA

Number of Hamiltonian Cycles (3)

$$\frac{(5-1)!}{2} = \frac{24}{2} = 12$$

https://en.wikipedia.org/wiki/Hamiltonian_path

ABCDE ABCED ABDCE ABDEC ABECD ABEDC ACBDE ACBED ACDBE ACDEB ACEBD ACEDB **ADBCE ADBEC ADCBE ADCEB** ADEBC ADECB AEBCD AEBDC AECBD AECDB AEDBC AEDCB

$$A-B-C-D-E-A$$

$$A-B-C-E-D-A$$

$$A-B-D-C-E-A$$

(n - 1)! / 2

Number of Hamiltonian Cycles (4)

$$\frac{(5-1)!}{2} = \frac{24}{2} = 12$$

https://en.wikipedia.org/wiki/Hamiltonian_path

ABCDE ABCED ABCED ABDCE ABDCE ABDCC ABDCC ABDCC ABECD ABECD ABECD ABECD ABECD ABECD ABECD ABECD ABECD ABECD ABECD ABECD ABECD ABECD ABECD ABECD ACBDE ACBDE ACDBE ACEBD ACEBD ACEBD ACEDBABCDE ABECD ACBDE ACBDE ACCBD ACCBD ACCBD ACCBD ACCBD ADCBEABCDE ACBDE ACCBD ACCBD ACCBD ADCBEADBCE ADDCB ADCEB ADCCB ADCCBABCD ACCBD ACCBD ADCCBABCD ACCBD ACCBD ADCBEABBCD AECDB AECDB AECDB AEDCBABCD AEDCBABCD AEDCBABBCD AEDCBAEDBC AEDCBABCD AEDCB			
ABEDCABEDCABEDCACBDEACBDEACBDEACBEDACBEDACBEDACDEBACDEBACDBEACDEBACDEBACEBDACEBDACEBDADBCEACEDBACEDBADCBEADBCEADBECADCBEADEEADCEBADCEBADCEBADCEBADCEBADEBCADECBADECBADEBCADECBADECBADEBCADECBADECBADECBAAECDBAEEDDCAECDBAECDBAECDBAECDBAECDBAEDBCAEDBC	ABCED ABDCE ABDEC	ABCED ABDCE ABDEC	ABCED ABDCE ABDEC
ACBDEACBDEACBDEACBDEACBEDACBEDACBEDACBEDACDBEACDBEACDBEACDEBACDEBACEBDACEBDACEBDACEBDACEDBACEDBADBCEADBCEADBECADBECADBECADBECADCEBADCEBADCEBADCEBADCEBADCEBADECBADECBADECBADECBADECBADECBAEBDCAEBDCAECDBAECBDAECDBAECDBAEDBCAEDBC			
ACBEDACBEDACBEDACDEDACDBEACDBEACDEBACDEBACEBDACEBDACEBDADBCEACEDBACEDBADCBEADBCEADBECADCBEADBECADBECADCBEADCEBADCEBADCEBADCEBADEBCADEBCADEBCAEBCDAEBCDAEBCDAECDBAECDBAEDBCAEDBC	ABEDC	A <mark>B</mark> EDC	ABEDC
ACDBEACDBEACDBEACDEBACDEBACEBDACEBDACEBDADBCEACEDBACEDBADCBEADBCEADBECADCBEADBECADBECADCBEADCEBADCEBADCEBADEBCADEBCADECBADECBADECBADECBADECBADECBADECBADECBADECBAEBCDAEBDCAEBDCAECDBAECDBAEDBCAEDBC	ACBDE	A <mark>C</mark> BDE	ACBDE
ACDEBACDEBACEBDACEBDACEBDACEBDACEBDACEBDADBCEACEDBACEDBADCBEADBCEADBECADBECADBECADCBEADCBEADCEBADCEBADEBCADEBCADECBADECBADECBADECBADECBADECBADECBADECBADECBAAEBDCAEBDCAEBDCAECDBAECDBAEDBCAEDBC	ACBED	A <mark>C</mark> BED	ACBED
ACEBD ACEDBACEBD ACEDBADBCE ADBCE ADCBEADBCE ADBEC ADCBEADBCE ADBEC ADCBE ADCBEADBEC ADCBE ADCEB ADCEB ADECBAEBCD AEEDDC AECDB AECDB AEDBCACEBD AECDB 	ACDBE	A <mark>C</mark> DBE	ACDBE
ACEDBACEDBADCBEADBCEADBCEADBCEADBECADBECADBECADBECADCBEADCBEADCEBADCEBADEBCADEBCADECBADECBAEBDCAEBDCAECDBAECDBAEDBCAEDBC	ACDEB	ACDEB	ACEBD
ADBCEADBCEADBECADBECADBECADBECADCBEADCBEADCEBADCEBADEBCADEBCADECBADECBAEBDCAEBDCAECBDAECBDAECDBAECDBAEDBCAEDBC	ACEBD	ACEBD	ADBCE
ADBECADBECADCBEADCBEADCEBADCEBADEBCADEBCADECBADECBAEBCDAEBCDAEBDCAECBDAECDBAECDBAEDBCAEDBC	ACEDB	ACEDB	ADCBE
	ADBEC ADCBE ADCEB ADEBC ADECB AEBCC AEBDC AECBD AECDB AECDB	ADBEC ADCBE ADCEB ADEBC ADECB AEBCD AEBDC AECBD AECDB AEDBC	

(n - 1)! / 2

References

Planar Graph (7A)

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints.

it can be drawn in such a way that no edges cross each other. Such a drawing is called a **plane graph** or **planar embedding** of the graph. (**planar representation**)

A **plane graph** can be defined as a planar graph with a mapping from every <u>node</u> to a <u>point</u> on a <u>plane</u>, and from every <u>edge</u> to a <u>plane curve</u> on that plane, such that the extreme points of each curve are the points mapped from its <u>end</u> nodes, and all curves are <u>disjoint</u> except on their extreme points.

Planar Graph Examples

4

Planar Representation

Planar Graph (7A)

A planar bipartite graph

6

Bipartite graph but <u>not</u> complete bipartite graph $K_{3,3}$

Planar Graph

Planar Graph (7A)

Young Won Lim 6/2/18

Non-planar Graph K_{3,3}

no where v_6

Non-planar

Discrete Mathematics, Rosen

Planar Graph (7A)

Young Won Lim 6/2/18

Non-planar graph examples - K₅

Non-planar graph examples – $K_{3,3}$

Non-planar graph examples – embedding $K_{3,3}$

Subdivision and Smoothing

Homeomorphism

two graphs G_1 and G_2 are **homeomorphic** if there is a graph **isomorphism** from some **subdivision** of G_1 to some **subdivision** of G_2 homeo (identity, sameness) iso (equal)

https://en.wikipedia.org/wiki/Planar_graph

Planar Graph (7A)

Homeomorphism Examples

https://en.wikipedia.org/wiki/Planar_graph

Planar Graph (7A)

Embedding on a surface

subdividing a graph preserves planarity.

Kuratowski's theorem states that

a finite graph is **planar** if and only if it contains **no** subgraph **homeomorphic** to K_5 (complete graph on five vertices) or $K_{3,3}$ (complete bipartite graph on six vertices, three of which connect to each of the other three).

In fact, a graph homeomorphic to K_5 or $K_{3,3}$ is called a Kuratowski subgraph.

A finite graph is planar if and only if it does <u>not</u> contain a **subgraph** that is a **subdivision** of the complete graph K_5 or the complete bipartite graph K_{33} (utility graph).

A subdivision of a graph results from inserting vertices into edges (changing an edge •——• to •—•) zero or more times.

An example of a graph with no G^{2} K_5 or $K_{3,3}$ subgraph. However, it contains a subdivision of $K_{3,3}$ and is therefore non-planar.

Kuratowski's Theorem

A subdivision of $K_{3,3}$

Planar Graph (7A)

Euler's formula states that if a **finite**, **connected**, **planar graph** is drawn in the plane without any edge intersections, and **v** is the number of **vertices**, **e** is the number of **edges** and **f** is the number of **faces** (regions bounded by edges, including the outer, infinitely large region), then

v – e + f = 2

A cut is minimum if the size or weight of the cut is not larger than the size of any other cut.

the size of this cut is 2, and there is no cut of size 1 because the graph is bridgeless.

Cwf-set cross

https://en.wikipedia.org/wiki/Cut_(graph_theory)

1

A cut is maximum if the size of the cut is not smaller than the size of any other cut.

the size of the cut is equal to 5, and there is no cut of size 6, or |E| (the number of edges), because the graph is not bipartite (there is an odd cycle).

https://en.wikipedia.org/wiki/Cut_(graph_theory)
The concept of duality applies as well to **infinite graphs** embedded in the plane as it does to **finite graphs**.

When all faces are bounded regions surrounded by a cycle of the graph, an **infinite planar** graph embedding can also be viewed as a **tessellation** of the plane, a covering of the plane by closed disks (the **tiles** of the **tessellation**) whose interiors (the **faces** of the **embedding**) are disjoint open disks.

https://en.wikipedia.org/wiki/Dual_graph

References

Tree Overview (1A)

Young Won Lim 6/2/18 Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Tree

a tree is an **undirected** graph in which any two **vertices** are **connected** by exactly **one path**.

any **acyclic connected** graph is a **tree**.

A forest is a disjoint union of trees.

A **tree** is an **undirected** graph G that satisfies any of the following equivalent conditions:

G is **connected** and has <u>no</u> **cycles**.

G is **acyclic**, and a **simple cycle** is formed if any **edge** is <u>added</u> to G.

G is **connected**, but is <u>not</u> **connected** if any single **edge** is <u>removed</u> from G.

4

G is **connected** and the 3-vertex complete graph K_3 is not a **minor** of G.

Any **two vertices** in G can be **connected** by a <u>unique</u> **simple path**.

Tree Condition (2)

G is <u>acyclic</u>, and a **simple cycle** is formed if any **edge** is <u>added</u> to G.

G is <u>connected</u>, but is <u>not</u> connected if any single **edge** is <u>removed</u> from G.

Tree Condition (3)

Any **two vertices** in G can be **connected** by a <u>unique</u> **simple path**.

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Tree Overview (1A)

6

Tree Condition (4)

7

Any **two vertices** in G can be **connected** by a <u>unique</u> **simple path**.

Tree Condition (5)

If G has <u>finitely</u> many **vertices**, say **n vertices**, then the above statements are also equivalent to any of the following conditions:

G is **connected** and has **n – 1 edges**.

G has **no simple cycles** and has **n – 1 edges**.

8

Tree Condition (6)

G is **connected** and the 3-vertex complete graph K_3 is not a **minor** of G.

deleting edges deleting vertices

contracting edges

In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by **deleting edges** and **vertices** and by **contracting edges**.

https://en.wikipedia.org/wiki/Graph_minor

Binary Tree

a **binary tree** is a tree data structure in which each **node** has <u>at most</u> <u>two</u> **children**, (the **left child**, the **right child**)

A recursive definition using just set theory notions is that a (non-empty) binary tree is a tuple (L, S, R), where L and R are binary trees or the empty set and S is a singleton set.

Some authors allow the binary tree to be the empty set as well.

https://en.wikipedia.org/wiki/Binary_tree

A rooted binary tree has a root node and every node has <u>at most</u> two children.

A full binary tree is (proper, plane binary tree) a tree in which every node has either 0 or 2 children.

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Perfect Binary Trees

A **perfect binary tree** is a binary tree in which all **interior nodes** have <u>two</u> **children** and all **leaves** have the <u>same</u> **depth** or <u>same</u> **level**.

also called a complete binary tree

<u>two</u> children

the <u>same</u> depth (level).

Complete Binary Trees

In a complete binary tree

<u>every level</u>, except possibly the last, is <u>completely filled</u>, and all <u>nodes</u> in the <u>last level</u> are as <u>far left</u> as possible.

An alternative definition is a **perfect tree** whose <u>rightmost leaves</u> (perhaps all) have been <u>removed</u>.

Complete Binary Trees and Linear Arrays

- 2·*i* Left child 2·*i* + 1 Right child
- A complete binary tree can be efficiently represented using an array.

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Different use of compute binary trees

Some authors use the term **complete** to refer instead to a **perfect** binary tree as defined above, in which case they call this type of tree an **almost complete binary tree** or **nearly complete binary tree**.

Properties of Binary Trees (1)

A complete binary tree can have between 1 and 2^{m-1} nodes at the <u>last level</u> m.

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Properties of Binary Trees (2)

The number of nodes n in a full binary tree, is at least $n = 2^{h} + 1$ and at most $n = 2^{h+1} - 1$, where h is the height of the tree.

A tree consisting of only a **root node** has a **height** of **0**.

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Properties of Binary Trees (3)

Properties of Binary Trees (4)

References

Binary Search Tree (3A)

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Binary search trees (BST), ordered binary trees sorted binary trees

are a particular type of **container**: **data structures** that store "items" (such as numbers, names etc.) in memory.

They allow <u>fast</u> **lookup**, **addition** and **removal** of items can be used to implement either <u>dynamic sets</u> of <u>items</u> <u>lookup tables</u> that allow finding an item by its **key** (e.g., <u>finding</u> the phone number of a person by name).

https://en.wikipedia.org/wiki/Binary_search_tree

keep their **keys** in <u>sorted order</u> lookup operations can use the principle of **binary search**

allowing to <u>skip</u> searching <u>half</u> of the tree each operation (**lookup**, **insertion** or **deletion**) takes time proportional to **log n**

much better than the **linear time** but slower than the corresponding operations on **hash tables**.

4

https://en.wikipedia.org/wiki/Binary_search_tree

when **looking** for a **key** in a tree or **looking** for a **place** to insert a <u>new key</u>, they <u>traverse</u> the tree from root to leaf, making <u>comparisons</u> to keys stored in the nodes <u>deciding</u> to continue in the **left** or **right subtrees**, on the basis of the <u>comparison</u>.

https://en.wikipedia.org/wiki/Binary_search_tree

Node, Left Child, Right Child

A binary search tree of size 9 and depth 3, with 8 at the root. The leaves are not drawn.

1, 3, 4, 6, 7, 8, 10, 13, 14

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

6

Subtrees

1, 3, 4, 6, 7, 8, 10, 13, 14

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Binary Search Tree (3A)

Node, Left Subtree, Right Subtree

(14

In-Order Traversal

1, 3, 4, 6, 7, 8, 10, 13, 14

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Successor

1, 3, 4, 6, 7, 8, 10, 13, 14

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Binary Search Tree (3A)

Young Won Lim 6/2/18

Successor

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Binary Search Tree (3A)

Predecessor

1, 3, 4, 6, 7, 8, 10, 13, 14

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Binary Search Tree (3A)
Different BST's with the same data

Binary Search Tree (3A)

Unbalanced BSTs

1, 3, 4, 6, 7, 8, 10, 13, 14 1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A)

Binary Search on a Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_algorithm

Insertion

Insertion begins as a search would begin; if the key is not equal to that of the root, we search the left or right subtrees as before. Eventually, we will reach an external node and add the new key-value pair (here encoded as a record 'newNode') as its right or left child, depending on the node's key.

In other words, we examine the root and recursively insert the new node to the left subtree if <u>its</u> key is less than that of the root, or the right subtree if its key is greater than or equal to the root.

https://en.wikipedia.org/wiki/Morphism

Deletion

- 1. Deleting a node with no children: simply remove the node from the tree.
- 2. Deleting a node with one child: remove the node and replace it with its child.
- 3. Deleting a node with two children: call the node to be deleted D. Do not delete D. Instead, choose either its in-order predecessor node or its in-order successor node as replacement node E. Copy the user values of E to D If E does not have a child simply remove E from its previous parent G. If E has a child, say F, it is a right child. Replace E with F at E's parent.

https://en.wikipedia.org/wiki/Morphism

Deletion

https://en.wikipedia.org/wiki/Morphism

References

Finite State Machine (1A)

Copyright (c) 2013 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

FSM and Digital Logic Circuits

- Latch
- D FlipFlop
- Registers
- Timing
- Mealy machine
- Moore machine
- Traffic Lights Examples

NOR-based SR Latch – SET / RESET

4

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

NOR-based SR Latch – HOLD

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

NOR-based SR Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

NOR-based SR Latch States

SR Latch States

NOR-based D Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

NOR-based D Latch – HOLD

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

NOR-based D Latch – Set / Reset / Hold

FSM (1A)

11

NOR-based D Latch – transparent / opaque

NOR-based D Latch States

Master-Slave D FlipFlop

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A)

this value is

half period

held for another

0

D

-•O

Do-

Master-Slave D FlipFlop – Falling Edge

D Latch & D FlipFlop

Level Sensitive D Latch

CK=1 transparent CK=0 opaque

Edge Sensitive D FlipFlop

 $CK=1 \rightarrow 0$ transparent else opaque

D FlipFlop with Enable (1)

EN=1 Regular D Flip Flop Sampling **D** input @ **posedge** of **CK**

EN=0 Holding D Flip Flop Sampling **Q** output @ **posedge** of CK

D FlipFlop with Enable (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A)

Registers

FF Timing (Ideal)

Find inputs to FFs

which will make outputs in this sequence

How to change current state

Finding FF Inputs

During the tth clock edge period,

Compute the next state Q(t+1) using the current state Q(t) and other external inputs

Place it to FF inputs

After the next clock edge, (t+1)th, the computed next state Q(t+1) becomes the current state

Method of Finding FF Inputs

Find the boolean functions D3, D2, D1, D0 in terms of Q3, Q2, Q1, Q0, and external inputs for all possible cases.

FSM (1A)

Q_{3:0}

State Transition

26

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A)

Young Won Lim 6/2/18

Moore FSM

Mealy FSM

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A)

Traffic Lights Example

FSM Inputs and Outputs

States

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Moore FSM State Transition Table

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

 $S_1 S_0 T_A T_B S_1 S_0'$

0 0 0 X 0 1

0 0 1 X 0 0

0 1 X X 1 0

10X011

1 0 X 1 1 0

1 1 X X 0 0

FSM	(1	A)
-----	----	----

States

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Moore FSM (1)

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Moore FSM

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

State Diagram

https://en.wikipedia.org/wiki/Finite-state_machine

Acceptors and Recognizers

a finite-state machine; this example shows one that determines whether a binary number has an even number of 0s, where S_1 is an **accepting state**.

https://en.wikipedia.org/wiki/Finite-state_machine

A **classifier** is a generalization of a finite state machine that, similar to an acceptor, produces a <u>single output</u> on <u>termination</u> but has <u>more than two</u> **terminal states**

Transducers generate output based on a given **input** and/or a **state** using actions. They are used for <u>control</u> <u>applications</u> and in the field of computational linguistics.

https://en.wikipedia.org/wiki/Finite-state_machine

Moore machine

Example: DFA, NFA, GNFA, or Moore machine [edit]

 S_1 and S_2 are states and S_1 is an **accepting state** or a **final state**. Each edge is labeled with the input. This example shows an acceptor for strings over $\{0,1\}$ that contain an even number of zeros.

https://en.wikipedia.org/wiki/State_diagram https://en.wikipedia.org/wiki/Finite-state transducer

Mealy machine

Example: Mealy machine [edit]

 S_0 , S_1 , and S_2 are states. Each edge is labeled with "*j* / *k*" where *j* is the input and *k* is the output.

https://en.wikipedia.org/wiki/State_diagram https://en.wikipedia.org/wiki/Mealy_machine

State Transition Table

states § S1, S2} inputs § 0, 1} itnit state 51 final state 51

https://en.wikipedia.org/wiki/State_transition_table

Mathematical Models for acceptors

Deterministic Finite Automaton Example (1)

The following example is of a DFA M, with a binary alphabet, which requires that the input contains an even number of 0s.

0,1

 $\begin{array}{c} \underbrace{\boldsymbol{S}} \underbrace{\boldsymbol{\Sigma}} & \widehat{\boldsymbol{S}} & \widehat{\boldsymbol{S}} & \widehat{\boldsymbol{F}} \\ M = (\widehat{\boldsymbol{O}}, \widehat{\boldsymbol{\Sigma}}, \widehat{\boldsymbol{\delta}}, \widehat{\boldsymbol{q}} \widehat{\boldsymbol{O}}, \widehat{\boldsymbol{F}}) \text{ where} & \widehat{\boldsymbol{\Sigma}} \quad \text{input al phabet} \\ \widehat{\boldsymbol{O}} = \underbrace{\{\widehat{\boldsymbol{S}}1, \widehat{\boldsymbol{S}}2\}}_{,}, & \widehat{\boldsymbol{\delta}} \quad \text{state set } \widehat{\boldsymbol{Q}} \\ \underbrace{\boldsymbol{\Sigma}} = \underbrace{\{\widehat{\boldsymbol{O}}, 1\}}_{,}, & \widehat{\boldsymbol{\delta}} \quad \text{state set } \widehat{\boldsymbol{Q}} \\ \widehat{\boldsymbol{O}} = \underbrace{\widehat{\boldsymbol{S}}1}_{,}, & \widehat{\boldsymbol{S}} \quad \text{init state } \widehat{\boldsymbol{4}}_{,b} \\ \widehat{\boldsymbol{\delta}} \quad \text{transibion func} \\ \widehat{\boldsymbol{\delta}} \quad \widehat{\boldsymbol{S}} \text{ defined by the following state transition table:} \end{array}$

551,52 X (0, 13

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The **state S1** represents that there has been an <u>even</u> number of 0s in the input so far, while **S2** signifies an <u>odd</u> number.

A **1** in the input does not change the state of the automaton.

When the <u>input ends</u>, the state will show whether the input contained an <u>even</u> number of **0**s or not. If the input did contain an <u>even</u> number of **0**s, M will finish in **state S1**, an accepting state, so the input string will be accepted.

The language recognized by M is the regular language given by the regular expression ((1*) 0 (1*) 0 (1*))*, where "*" is the Kleene star, e.g., 1* denotes any number (possibly zero) of consecutive **ones**.

A finite-state transducer is a sextuple (Σ , Γ , S, s0, δ , ω), where: Σ is the input alphabet (a finite non-empty set of symbols). Γ is the output alphabet (a finite, non-empty set of symbols). S is a finite, non-empty set of states. s0 is the initial state, an element of S. ω is the output function.

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Mathematical Model for transducers (2)

If the **output** function is a function of a **state** and **input** alphabet $(\omega : S \times \Sigma \rightarrow \Gamma)$ that definition corresponds to the **Mealy model**, and can be modelled as a Mealy **machine**.

If the **output** function depends only on a **state** (ω : S \rightarrow Γ) that definition corresponds to the **Moore model**, and can be modelled as a **Moore machine**.

A finite-state machine with no output function at all is known as a **semiautomaton** or **transition** system.

https://en.wikiversity.org/wiki/The necessities in Digital Design

= {outputs}

 $\sum = \{inputs\}$

S = { States }

 $\overline{\sum} = \{0, 1\}$

 $S = \{S_1, S_1\}$

References

