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Degree of a vertex

https://en.wikipedia.org/wiki/Degree_(graph_theory)

 the degree (or valency) of a vertex is 
the number of edges incident to the vertex, 
with loops counted twice. 

The degree of a vertex v is denoted deg(v)
the maximum degree of a graph G, denoted by Δ(G)
the minimum degree of a graph, denoted by δ(G)

Δ(G) = 5 
δ(G) = 0

In a regular graph, all degrees are the same
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Regular Graphs

https://en.wikipedia.org/wiki/Regular_graph

a regular graph is a graph where each vertex has the 
same number of neighbors; i.e. every vertex has the 
same degree or valency. 
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Handshake Lemma

https://en.wikipedia.org/wiki/Degree_(graph_theory)

The degree sum formula states that, 
given a graph G = ( V , E ) 

This statement (as well as the degree sum formula) is 
known as the handshaking lemma. 
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Adding odd vertex

https://en.wikipedia.org/wiki/Eulerian_path
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The number of odd vertices

Even vertices :    Odd vertices : 

in any graph, the number of 
vertices with odd degree is even. 

{x
1,
x

2,
⋯ , xm} {y

1,
y

2,
⋯ , yn}

S = deg(x
1
) + deg(x

2
) + ⋯ + deg(xm) T = deg( y

1
) + deg( y

2
) + ⋯ + deg( yn)

deg(xi) : even deg( yi) : odd

S : even

S+T : even

T : even = ∑ n odd numbers

S = even + even + ⋯ + even T = odd + odd + ⋯ + odd

n : even
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Hamiltonian Cycles – Properties (3)

https://en.wikipedia.org/wiki/Hamiltonian_path

A tournament (with more than two vertices) is Hamiltonian if and 
only if it is strongly connected.

The number of different Hamiltonian cycles 
in a complete undirected graph on n vertices is (n − 1)! / 2
in a complete directed graph on n vertices is (n − 1)!. 

These counts assume that cycles that are the same apart from 
their starting point are not counted separately.
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Number of Hamiltonian Cycles (1)

https://en.wikipedia.org/wiki/Hamiltonian_path
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Number of Hamiltonian Cycles (2)

https://en.wikipedia.org/wiki/Hamiltonian_path
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Number of Hamiltonian Cycles (3)

https://en.wikipedia.org/wiki/Hamiltonian_path
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Number of Hamiltonian Cycles (4)

https://en.wikipedia.org/wiki/Hamiltonian_path
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Planar Graph

https://en.wikipedia.org/wiki/Planar_graph

a planar graph is a graph that can be embedded in the 
plane, i.e., it can be drawn on the plane in such a way 
that its edges intersect only at their endpoints. 

it can be drawn in such a way that no edges cross each 
other. Such a drawing is called a plane graph or planar
embedding of the graph. (planar representation)

A plane graph can be defined as a planar graph with a 
mapping from every node to a point on a plane, and from 
every edge to a plane curve on that plane, 
such that the extreme points of each curve are the points 
mapped from its end nodes, and all curves are disjoint 
except on their extreme points.
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Planar Graph Examples

https://en.wikipedia.org/wiki/Planar_graph
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Planar Representation

Discrete Mathematics, Rosen
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A planar bipartite graph
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Non-planar Graph K
3,3

Discrete Mathematics, Rosen
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Non-planar graph examples - K
5

Non-planar Non-planar Non-planar 

homeomorphicisomorphic

All these graphs are similar 
in determining whether 
they are planar or not
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All these graphs are similar
in determining whether 
they are planar or not

Non-planar graph examples – K
3,3

homeomorphicisomorphic

Non-planar Non-planar Non-planar 
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Non-planar graph examples – embedding K
3,3

Planar Non-planar 

contains K
3,3

contains K
3,3

contains a 
subdivision of K

3,3
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Subdivision and Smoothing

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Smoothing
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Homeomorphism

https://en.wikipedia.org/wiki/Planar_graph

two graphs G
1
 and G

2
 are homeomorphic 

if there is a graph isomorphism 
from some subdivision of G

1
 

to some subdivision of G
2
 

homeo (identity, sameness)

iso (equal)
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Homeomorphism Examples

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Subdivision

isomorphichomeomorphic
Subdivision
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Embedding on a surface

https://en.wikipedia.org/wiki/Planar_graph

subdividing a graph preserves planarity. 

Kuratowski's theorem states that

    a finite graph is planar if and only if 
it contains no subgraph homeomorphic 
to K

5
 (complete graph on five vertices) or 

K
3,3

 (complete bipartite graph on six vertices, 

three of which connect to each of the other three).

In fact, a graph homeomorphic to K
5
 or K

3,3
 

is called a Kuratowski subgraph.
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Kuratowski’s Theorem 

https://en.wikipedia.org/wiki/Planar_graph

A finite graph is planar if and only if 
it does not contain a subgraph 
that is a subdivision of the complete graph K

5
 or 

the complete bipartite graph K
3,3 

(utility graph).

A subdivision of a graph results 
from inserting vertices into edges 
(changing an edge •——• to •—•—•) 
zero or more times.
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Kuratowski’s Theorem 

https://en.wikipedia.org/wiki/Planar_graph
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A subdivision of K
3,3
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Euler’s Formula

https://en.wikipedia.org/wiki/Planar_graph

Euler's formula states that if a finite, connected, planar 
graph is drawn in the plane without any edge intersections, 
and v is the number of vertices, e is the number of edges
and f is the number of faces (regions bounded by edges, 
including the outer, infinitely large region), then

    v − e + f = 2
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Minimum Cut 

https://en.wikipedia.org/wiki/Cut_(graph_theory)

A cut is minimum if the size or weight of the cut 
is not larger than the size of any other cut. 

the size of this cut is 2, 
and there is no cut of size 1 
because the graph is bridgeless.
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Maximum Cut 

https://en.wikipedia.org/wiki/Cut_(graph_theory)

A cut is maximum if the size of the cut 
is not smaller than the size of any other cut. 

the size of the cut is equal to 5, 
and there is no cut of size 6, 
or |E| (the number of edges), 
because the graph is not bipartite 
(there is an odd cycle).
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Infinite Graphs and Tessellations

https://en.wikipedia.org/wiki/Dual_graph

The concept of duality applies as well 
to infinite graphs embedded in the plane 
as it does to finite graphs. 

When all faces are bounded regions 
surrounded by a cycle of the graph, 
an infinite planar graph embedding 
can also be viewed as a tessellation of the plane, 
a covering of the plane by closed disks 
(the tiles of the tessellation) whose interiors 
(the faces of the embedding) are disjoint open disks. 
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Tree 

https://en.wikipedia.org/wiki/Tree_(graph_theory)

a tree is an undirected graph in which 
any two vertices are connected 
by exactly one path. 

any acyclic connected graph is a tree. 

A forest is a disjoint union of trees.
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 Tree Condition  (1)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A tree is an undirected graph G 

that satisfies any of the following equivalent conditions:

G is connected and has no cycles.

G is acyclic, and a simple cycle is formed if any edge is added to G.

G is connected, but is not connected if any single edge is removed from G.

G is connected and the 3-vertex complete graph K
3
 is not a minor of G.

Any two vertices in G can be connected by a unique simple path.
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 Tree Condition  (2)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

G is acyclic, and a simple cycle is 
formed if any edge is added to G.

G is connected, but is not connected 
if any single edge is removed from G.
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 Tree Condition  (3)

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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 Tree Condition  (4)

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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 Tree Condition  (5)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

If G has finitely many vertices, 
say n vertices, then the above statements 
are also equivalent to any of the following conditions:

G is connected and has n − 1 edges.

G has no simple cycles and has n − 1 edges.
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 Tree Condition  (6)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

G is connected and the 3-vertex 
complete graph K

3
is not a minor of G.

deleting edges
deleting vertices

contracting edges
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Graph Minor

https://en.wikipedia.org/wiki/Graph_minor

In graph theory, an undirected graph H 
is called a minor of the graph G 
if H can be formed from G 
by deleting edges and vertices and 
by contracting edges.

deleting a vertex

contracting an edge

deleting an edge

deleting a vertex

deleting an edge
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Binary Tree 

https://en.wikipedia.org/wiki/Binary_tree

a binary tree is a tree data structure in which 
each node has at most two children, 
(the left child, the right child)

A recursive definition using just set theory notions 
is that a (non-empty) binary tree is a tuple (L, S, R), 
where L and R are binary trees or the empty set and 
S is a singleton set. 

Some authors allow the binary tree 
to be the empty set as well. 
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Full Binary Tree

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A rooted binary tree has a root node and 
every node has at most two children.

A full binary tree is 
(proper, plane binary tree)  
a tree in which every node 
has either 0 or 2 children.
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Perfect Binary Trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A perfect binary tree is a binary tree in which 
all interior nodes have two children and 
all leaves have the same depth or same level.

also called a complete binary tree 

the same depth (level).

two children
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Complete Binary Trees 

https://en.wikipedia.org/wiki/Tree_(graph_theory)

In a complete binary tree 
every level, except possibly the last, 
is completely filled, 
and all nodes in the last level are 
as far left as possible. 

An alternative definition is a perfect tree 
whose rightmost leaves (perhaps all) 
have been removed. 
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Complete Binary Trees and Linear Arrays

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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A complete binary tree can 
be efficiently represented 
using an array.
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Different use of compute binary trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Some authors use the term complete
to refer instead to a perfect binary tree 
as defined above, 
in which case they call this type of tree 
an almost complete binary tree or 
nearly complete binary tree. 

complete

perfect

nearly complete

complete
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Properties of Binary Trees (1)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A complete binary tree 
can have between 1 and 2m-1 nodes 
at the last level m.

Level l=1

Level l=2

Level l=3

Level l=4

20

21

22

23

height h=0

height h=1

height h=2

height h=3
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Properties of Binary Trees (2)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

The number of nodes n in a full binary tree, is
at least n = 2h + 1 and 
at most n = 2h+1 − 1, 
where h is the height of the tree. 

A tree consisting of only a root node 
has a height of 0.

h=0

h=1

h=2

h=3
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Properties of Binary Trees (3)

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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Properties of Binary Trees (4)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

The number of leaf nodes is  m 
in a perfect binary tree, 
is  m=(n+1)/2 

because the number of non-leaf 
(internal) nodes is m–1

This means that a perfect binary tree
with m leaves has 
n = 2m–1 nodes.
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Binary Search Tree (1) 

https://en.wikipedia.org/wiki/Binary_search_tree

Binary search trees (BST),
ordered binary trees
sorted binary trees

are a particular type of container: 
data structures that store "items" 
(such as numbers, names etc.) in memory. 

They allow fast lookup, addition and removal of items
can be used to implement either dynamic sets of items
lookup tables that allow finding an item by its key 
(e.g., finding the phone number of a person by name).
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Binary Search Tree (2) 

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order
lookup operations can use 
the principle of binary search

allowing to skip searching half of the tree
each operation (lookup, insertion or deletion) 
takes time proportional to log n

much better than the linear time
but slower than the corresponding operations 
on hash tables.



Binary Search Tree (3A) 5 Young Won Lim
6/2/18

Binary Search Tree (3) 

https://en.wikipedia.org/wiki/Binary_search_tree

when looking for a key in a tree 
or looking for a place to insert a new key, 
they traverse the tree from root to leaf, 
making comparisons to keys stored in the nodes
deciding to continue in the left or right subtrees, 
on the basis of the comparison. 
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Node, Left Child, Right Child

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

3 < 8 < 10

1 < 3 < 6 10 < 14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14



Binary Search Tree (3A) 7 Young Won Lim
6/2/18

Subtrees

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14
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Node, Left Subtree, Right Subtree

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

8

3

6a

4 7

10

13

141

3

6a

4 7

1

10

13

14

6

4 7 13

14
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In-Order Traversal

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14
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Successor 

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141
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Successor 

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

 

 

 

 

 

 

 

 

 

 

 

If the right child exists, 
then the minimum 

in the right subtree 

–  the rightmost node

the parent of the farthest 
node that can be reached 
by following only right 
edges backward.
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Predecessor

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141
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Different BST’s with the same data

6

3

41

8

107

13

14 1

6

74

13

1410

3

8

4

3

1

6

14

7

10

8 13

1, 3, 4, 6, 7, 8, 10, 13, 14 1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14
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Unbalanced BSTs

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14

4

6

7

8

10

13

14

13

14

10

8

7

6

4

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14
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Binary Search on a Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_algorithm

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14
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Insertion 

https://en.wikipedia.org/wiki/Morphism

Insertion begins as a search would begin; 

if the key is not equal to that of the root,

we search the left or right subtrees as before. 

Eventually, we will reach an external node 

and add the new key-value pair 

(here encoded as a record 'newNode') 

as its right or left child, 

depending on the node's key. 

In other words, we examine the root 

and recursively insert the new node 

to the left subtree if its key is less than that of the root,

or the right subtree if its key is greater than or equal to the root.
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Deletion

https://en.wikipedia.org/wiki/Morphism

1. Deleting a node with no children: 
simply remove the node from the tree.

2. Deleting a node with one child: 
remove the node and replace it with its child.

3. Deleting a node with two children: 
call the node to be deleted D. 
Do not delete D. 
Instead, choose either its in-order predecessor node 
or its in-order successor node as replacement node E. 
Copy the user values of E to D
If E does not have a child 

simply remove E from its previous parent G. 
If E has a child, say F, it is a right child. 

Replace E with F at E's parent.
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Deletion

https://en.wikipedia.org/wiki/Morphism



Young Won Lim
6/2/18

References

[1] http://en.wikipedia.org/
[2] 



Young Won Lim
6/2/18

Finite State Machine (1A)



Young Won Lim
6/2/18

 Copyright (c)  2013 - 2018  Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no 
Back-Cover Texts.  A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.



FSM (1A) 3 Young Won Lim
6/2/18

FSM and Digital Logic Circuits

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

 Latch

 D FlipFlop

 Registers

 Timing

 Mealy machine

 Moore machine

 Traffic Lights Examples
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NOR-based SR Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

S=0

R=1

RESET Q=0

Q=1

S=1

R=0

SET Q=1

Q=0

1

0

0

1 1

0

0

1
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NOR-based SR Latch – HOLD 

S=0

R=0

HOLD Q=old Q

Q=old Q

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

S=0

R=0

HOLD Q=old Q

Q=old Q

0

0

0

1 0

0

0

1→0

→1 →0

→1
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NOR-based SR Latch

R

S

Q

SET
begins

RST
begins

SET
begins

RST
begins

S=1
R=0

S=0
R=1

S=1
R=0

S=0
R=1

S=0
R=0

S=0
R=0

S=0
R=0

S=0
R=0

Hold
begins

Hold
begins

Hold
begins

Hold
begins

S=1

R=0

SET Q=1

Q=0

S=0

R=1

RESET Q=0

Q=1

S=0

R=0

HOLD Q=old Q

Q=old Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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NOR-based SR Latch States

S=1

R=0

SET

Q=1

Q=0

S=0

R=1

RESETQ=0

Q=1

S=0

R=0

HOLD Q=old Q

Q=old Q

S=1

R=0

S=0

R=1

S=0

R=0

S=0

R=1

S=0

R=0

S=1

R=0

Q=1

Q=0

Q=0

Q=1

S

R Q

Q

SETRESETHOLD NOR based SR Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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0 1

SR Latch States

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

SET SETHOLD, HOLD,

RESET

RESET S=1

R=0

SET

S=0

R=1

RESET

S=0

R=0

HOLD Q=old Q

Q=old Q

Q=1

Q=0

Q=0

Q=1
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NOR-based D Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

C
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NOR-based D Latch – HOLD 

C

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

C

0

0

0

0

0

0

0

1

S

R

S

R

S=0

R=0

HOLD Q=old Q

Q=old Q

S=0

R=0

HOLD Q=old Q

Q=old Q

D=X

C=0

D=X

C=0
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NOR-based D Latch – Set / Reset / Hold 

C

D

Q

transparent opaque transparent opaque

SET
begins

RST
begins

SET
begins

RST
begins

Hold
begins

Hold
begins

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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NOR-based D Latch – transparent / opaque  

C

D

Q

transparent opaque transparent opaque

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D→Q

input→output input→output

D→Q
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NOR-based D Latch States

Q=1

Q=0

Q=0

Q=1

C=1

D=1

C=1

D=0

C=0

D=X

C=1

D=0

C=0

D=X

C=1

D=1

C

D

C Q

Q

SETRESETHOLD NOR based D Latch

Q

Q

SETRESETHOLD

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Master-Slave D FlipFlop

D

Y

Y

Q

D

Q

Master D Latch

Slave D Latch

Master-Slave D F/F

Y

the hold output 
of the master is 
transparently 
reaches the 
output of the 
slave

this value is 
held for another
half period

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Master-Slave D FlipFlop – Falling Edge

Master D Latch

Slave D Latch

D

C Q

Q D

C Q

Q

D

Q

Q

D

CK

Q

Q

D

CK

Q

D

CK

Q

Y

Y

CK

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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D Latch & D FlipFlop

Level Sensitive  D Latch

Edge Sensitive D FlipFlop

D

Q

Q

CK

D

CK

Q

D

Q

Q

C

D

Q

CK=1 transparent
CK=0 opaque

CK=1→0  transparent
else opaque

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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D FlipFlop with Enable (1)

D

Q

Q

0

1D

EN

Q

Q

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

EN=1 Regular D Flip Flop
Sampling D input @ posedge of CK

EN=0 Holding D Flip Flop
Sampling Q output @ posedge of CK D

Q

Q

0

1D

EN

Q

Q

CK

1

0
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D FlipFlop with Enable (2)

D

Q

Q

EN

D

Q

Q

0

1D

EN

Q

Q

CK

D

EN

Q

CK

D

EN

Q

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Registers

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
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FF Timing (Ideal)

D
3:0

Q
3:0

Inputs to FFs

Outputs of FFs

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register
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States

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

(t+1)th 
edge

(t+2)th 
edge

(t+3)th 
edge

(t+4)th 
edge

(t+5)th

edge
(t)th 
edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
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1
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D
0

Register

Inputs Outputs

State 
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Sequence of States

? ? ? ? ? ?

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

Find inputs to FFs

which will make outputs 
in this sequence

(t+1)th 
edge

(t+2)th 
edge

(t+3)th 
edge

(t+4)th 
edge

(t+5)th

edge
(t)th 
edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Inputs Outputs

State 
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How to change current state

NextSt

CurrSt

Compute NextSt from 
CurrSt, Ta, Tb

This NextSt becomes 
a new CurrSt

Compute NextSt

CurrSt  <= NextSt

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Current 
State 

Next 
State

comb

Current
State

Next
State

input
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Finding FF Inputs

D  Q 

D  Q 

D  Q 

D  Q 

Comb
Next
State
Logic

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

Inputs
to FSM

During the tth clock edge period, 

Compute the next state Q(t+1) 
using the current state Q(t) and 
other external inputs

Place it to FF inputs

After the next clock edge, (t+1)th, 
the computed next state Q(t+1) 
becomes the current state   

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Current
State 

Next
State 
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Method of Finding FF Inputs

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5) Q(t+6)

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

Inputs

Find the boolean functions 
D3, D2, D1, D0
in terms of Q3, Q2, Q1, Q0, 
and external inputs
for all possible cases.

Q(t)

Inputs 

+

Q(t+1)

Current
State

Next
State

input

Q(t) Q(t+1)
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State Transition

Q(t+1)

Q(t+1)Q(t)

D
3:0

Q
3:0

Inputs

Q(t+1)

Q(t)

Inputs

Compute the next state
using the current state 
and external inputs
in the current clock cycle

After the next clock edge, 
the computed next state (FF Inputs)  
becomes the current state (FF Outputs)https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Moore FSM

1

clock

State
Register

Next State
Combinational

Logic

Output 
Combinational

Logic
D  Q D  Q D  Q 

D  Q D  Q D  Q 

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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FSM
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FSM
Inputs
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Mealy FSM

1

clock

State
Register

Next State
Combinational

Logic

Output 
Combinational

Logic
D QD QD Q

D  Q D  Q D  Q 

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Traffic Lights Example

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
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FSM Inputs and Outputs

L
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L
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L
B

L
B

T
B

T
B

T
A

T
A

Traffic Lights - Outputs

L
A
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B

Sensor - Inputs

T
B

T
A

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
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States 
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Moore FSM State Transition Table
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States 
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Moore FSM (1)

D Q

D  Q 

S'
1
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0

S
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S
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L
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B0

S
1

S
0

clk

Current 
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Next 
State

inputs

outputs

states
00: S0
01: S1
10: S2
11: S3

outputs (LA/LB)
00: Green
01: Yellow
10: Red
11: X

NextSt

CurrSt

Compute NextSt from 
CurrSt, Ta, Tb

This NextSt becomes 
a new CurrSt

Compute NextSt

CurrSt  <= NextSt
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Moore FSM 
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11: X https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
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State Diagram 

https://en.wikipedia.org/wiki/Finite-state_machine
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Acceptors and Recognizers

https://en.wikipedia.org/wiki/Finite-state_machine
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Classifiers and Transducers

https://en.wikipedia.org/wiki/Finite-state_machine

A classifier is a generalization of a finite state machine that, 

similar to an acceptor, produces a single output on termination 

but has more than two terminal states

Transducers generate output based on a given input and/or a state using 
actions. They are used for control applications and in the field of 
computational linguistics.
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Moore machine

https://en.wikipedia.org/wiki/State_diagram

https://en.wikipedia.org/wiki/Finite-state_transducer
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Mealy machine

https://en.wikipedia.org/wiki/Mealy_machine

https://en.wikipedia.org/wiki/State_diagram
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State Transition Table 

https://en.wikipedia.org/wiki/State_transition_table
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Mathematical Models for acceptors

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A deterministic finite state machine or 

acceptor deterministic finite state machine is 

a quintuple (Σ, S, s
0
, δ, F), where:

● Σ is the input alphabet (a finite, non-empty set of symbols).
● S is a finite, non-empty set of states.

● s
0
 is an initial state, an element of S.

● δ is the state-transition function: δ : S × Σ → S 
● F is the set of final states, a (possibly empty) subset of S.
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Deterministic Finite Automaton Example (1)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The following example is of a DFA M, with a binary alphabet, 

which requires that the input contains an even number of 0s.

M = (Q, Σ, δ, q0, F) where

    Q = {S1, S2},

    Σ = {0, 1},

    q0 = S1,

    F = {S1}, and

    δ is defined by the following state transition table:
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Deterministic Finite Automaton Example (2)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The state S1 represents that there has been an 
even number of 0s in the input so far, while S2 
signifies an odd number. 

A 1 in the input does not change the state of the 
automaton. 

When the input ends, the state will show whether 
the input contained an even number of 0s or not. 

If the input did contain an even number of 0s, M will 
finish in state S1, an accepting state, so the input 
string will be accepted.

The language recognized by M is the regular 
language given by the regular expression 

((1*) 0 (1*) 0 (1*))*, where "*" is the Kleene star, 
e.g., 1* denotes any number (possibly zero) of 
consecutive ones.
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Mathematical Model for transducers (1)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A finite-state transducer is a sextuple (Σ, Γ, S, s0, δ, ω), where:

Σ is the input alphabet (a finite non-empty set of symbols).

Γ is the output alphabet (a finite, non-empty set of symbols).

S is a finite, non-empty set of states.

s0 is the initial state, an element of S. 

ω is the output function.
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Mathematical Model for transducers (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

If the output function is a function of a state and input alphabet

(ω : S × Σ → Γ) that definition corresponds to the Mealy model, 

and can be modelled as a Mealy machine. 

If the output function depends only on a state (ω : S → Γ) 

that definition corresponds to the Moore model, 

and can be modelled as a Moore machine. 

A finite-state machine with no output function at all is known as a 
semiautomaton or transition system.
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