
Young Won Lim
5/25/18

Eulerian Cycle (2A)

Young Won Lim
5/25/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Eulerian Cycles (2A) 37 Young Won Lim
5/25/18

Degree of a vertex

https://en.wikipedia.org/wiki/Degree_(graph_theory)

 the degree (or valency) of a vertex is
the number of edges incident to the vertex,
with loops counted twice.

The degree of a vertex v is denoted deg(v)
the maximum degree of a graph G, denoted by Δ(G)
the minimum degree of a graph, denoted by δ(G)

Δ(G) = 5
δ(G) = 0

In a regular graph, all degrees are the same

3

3

2
1

2

5
0

a

b

c
d

e

f
g

Eulerian Cycles (2A) 38 Young Won Lim
5/25/18

Regular Graphs

https://en.wikipedia.org/wiki/Regular_graph

a regular graph is a graph where each vertex has the
same number of neighbors; i.e. every vertex has the
same degree or valency.

Eulerian Cycles (2A) 39 Young Won Lim
5/25/18

Handshake Lemma

https://en.wikipedia.org/wiki/Degree_(graph_theory)

The degree sum formula states that,
given a graph G = (V , E)

This statement (as well as the degree sum formula) is
known as the handshaking lemma.

3

3

2
1

2

5
0

a

b

c
d

e

f
g

deg(a) = 1

deg(b) = 3

deg(c) = 3

deg (d) = 2

deg (e) = 5

deg (f) = 2

deg (g) = 0

16

|E| = 8

2|E| = 16

Eulerian Cycles (2A) 40 Young Won Lim
5/25/18

Adding odd vertex

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A) 41 Young Won Lim
5/25/18

The number of odd vertices

Even vertices : Odd vertices :

in any graph, the number of
vertices with odd degree is even.

{x
1,
x

2,
⋯ , xm} {y

1,
y

2,
⋯ , yn}

S = deg(x
1
) + deg(x

2
) + ⋯ + deg(xm) T = deg(y

1
) + deg(y

2
) + ⋯ + deg(yn)

deg(xi) : even deg(yi) : odd

S : even

S+T : even

T : even = ∑ n odd numbers

S = even + even + ⋯ + even T = odd + odd + ⋯ + odd

n : even

Young Won Lim
5/25/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/26/18

Hamiltonian Cycle (3A)

Young Won Lim
5/26/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Hamiltonian Cycles (3A) 23 Young Won Lim
5/26/18

Hamiltonian Cycles – Properties (3)

https://en.wikipedia.org/wiki/Hamiltonian_path

A tournament (with more than two vertices) is Hamiltonian if and
only if it is strongly connected.

The number of different Hamiltonian cycles
in a complete undirected graph on n vertices is (n − 1)! / 2
in a complete directed graph on n vertices is (n − 1)!.

These counts assume that cycles that are the same apart from
their starting point are not counted separately.

Hamiltonian Cycles (3A) 24 Young Won Lim
5/26/18

Number of Hamiltonian Cycles (1)

https://en.wikipedia.org/wiki/Hamiltonian_path

E

C D

A

B

(5−1)!=24

A BCDE AB CDE

AC BDE

AD BCE

AE BCD

ABC DE

ABD CE

ABE CD

ACB DE

ACD BE

ACE BD

ADB CE

ADC BE

ADE BC

AEB CD

AEC BD

AED BC

ABCD E

ABCE D

ABDC E

ABDE C

ABEC D

ABED C

ACBD E

ACBE D

ACDB E

ACDE B

ACEB D

ACED B

ADBC E

ADBE C

ADCB E

ADCE B

ADEB C

ADEC B

AEBC D

AEBD C

AECB D

AECD B

AEDB C

AEDC B

ABCDE

ABCED

ABDCE

ABDEC

ABECD

ABEDC

ACBDE

ACBED

ACDBE

ACDEB

ACEBD

ACEDB

ADBCE

ADBEC

ADCBE

ADCEB

ADEBC

ADECB

AEBCD

AEBDC

AECBD

AECDB

AEDBC

AEDCB

Hamiltonian Cycles (3A) 25 Young Won Lim
5/26/18

Number of Hamiltonian Cycles (2)

https://en.wikipedia.org/wiki/Hamiltonian_path

E

C D

A

B

ABCDE

ABCED

ABDCE

ABDEC

ABECD

ABEDC

ACBDE

ACBED

ACDBE

ACDEB

ACEBD

ACEDB

ADBCE

ADBEC

ADCBE

ADCEB

ADEBC

ADECB

AEBCD

AEBDC

AECBD

AECDB

AEDBC

AEDCB

BACDE

BACED

BADCE

BADEC

BAECD

BAEDC

BCADE

BCAED

BCDAE

BCDEA

BCEAD

BCEDA

BDACE

BDAEC

BDCAE

BDCEA

BDEAC

BDECA

BEACD

BEADC

BECAD

BECDA

BEDAC

BEDCA

DABCE

DABEC

DACBE

DACEB

DADBC

DADCB

DBACE

DBAEC

DBCAE

DBCEA

DBEAC

DBECA

DCABE

DCAEB

DCBAE

DCBEA

DCEAB

DCEBA

DEABC

DEACB

DEBAC

DEBCA

DECAB

DECBA

CABDE

CABED

CADBE

CADEB

CAEBD

CAEDB

CBADE

CBAED

CBDAE

CBDEA

CBEAD

CBEDA

CDABE

CDAEB

CDBAE

CDBEA

CDEAB

CDEBA

CEABD

CEADB

CEBAD

CEBDA

CEDAB

CEDBA

EABCD

EABDC

EACBD

EACDB

EADBC

EADCB

EBACD

EBADC

EBCAD

EBCDA

EBDAC

EBDCA

ECABD

ECADB

ECBAD

ECBDA

ECDAB

ECDBA

EDABC

EDACB

EDBAC

EDBCA

EDCAB

EDCBA

(5−1)!=24

Hamiltonian Cycles (3A) 26 Young Won Lim
5/26/18

Number of Hamiltonian Cycles (3)

https://en.wikipedia.org/wiki/Hamiltonian_path

E

C D

A

B

ABCDE

ABCED

ABDCE

ABDEC

ABECD

ABEDC

ACBDE

ACBED

ACDBE

ACDEB

ACEBD

ACEDB

ADBCE

ADBEC

ADCBE

ADCEB

ADEBC

ADECB

AEBCD

AEBDC

AECBD

AECDB

AEDBC

AEDCB

(5−1)!
2

=
24

2
= 12

A−B−C−D−E−A

A−B−C−E−D−A

A−B−D−C−E−A

(n − 1)! / 2

Hamiltonian Cycles (3A) 27 Young Won Lim
5/26/18

Number of Hamiltonian Cycles (4)

https://en.wikipedia.org/wiki/Hamiltonian_path

E

C D

A

B

(5−1)!
2

=
24

2
= 12

(n − 1)! / 2

ABCDE

ABCED

ABDCE

ABDEC

ABECD

ABEDC

ACBDE

ACBED

ACDBE

ACDEB

ACEBD

ACEDB

ADBCE

ADBEC

ADCBE

ADCEB

ADEBC

ADECB

AEBCD

AEBDC

AECBD

AECDB

AEDBC

AEDCB

ABCDE

ABCED

ABDCE

ABDEC

ABECD

ABEDC

ACBDE

ACBED

ACDBE

ACEBD

ADBCE

ADCBE

ABCDE

ABCED

ABDCE

ABDEC

ABECD

ABEDC

ACBDE

ACBED

ACDBE

ACDEB

ACEBD

ACEDB

ADBCE

ADBEC

ADCBE

ADCEB

ADEBC

ADECB

AEBCD

AEBDC

AECBD

AECDB

AEDBC

AEDCB

Young Won Lim
5/26/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
6/2/18

Planar Graph (7A)

Young Won Lim
6/2/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Planar Graph (7A) 3 Young Won Lim
6/2/18

Planar Graph

https://en.wikipedia.org/wiki/Planar_graph

a planar graph is a graph that can be embedded in the
plane, i.e., it can be drawn on the plane in such a way
that its edges intersect only at their endpoints.

it can be drawn in such a way that no edges cross each
other. Such a drawing is called a plane graph or planar
embedding of the graph. (planar representation)

A plane graph can be defined as a planar graph with a
mapping from every node to a point on a plane, and from
every edge to a plane curve on that plane,
such that the extreme points of each curve are the points
mapped from its end nodes, and all curves are disjoint
except on their extreme points.

Planar Graph (7A) 4 Young Won Lim
6/2/18

Planar Graph Examples

https://en.wikipedia.org/wiki/Planar_graph

Planar Graph (7A) 5 Young Won Lim
6/2/18

Planar Representation

Discrete Mathematics, Rosen

K
4 Q

3

No crossing No crossing

K
4

Planar Q
3 Planar

Planar Graph (7A) 6 Young Won Lim
6/2/18

A planar bipartite graph

v
1

v
2

v
3

v
4

v
5

v
6

Bipartite graph
but not complete
bipartite graph
K

3,3

v
1

v
3

v
4

v
6

v
1

v
2

v
3

v
4

v
5

v
6

v
2

v
5

Planar Graph

Planar Graph (7A) 7 Young Won Lim
6/2/18

Non-planar Graph K
3,3

Discrete Mathematics, Rosen

v
1

v
2

v
3

v
4

v
5

v
6

v
1

v
2v

4

v
5

R
2

R
1

v
1

v
2v

4

v
5

R
1v

3

R
21

R
22

no where v
6

Non-planar

Planar Graph (7A) 8 Young Won Lim
6/2/18

Non-planar graph examples - K
5

Non-planar Non-planar Non-planar

homeomorphicisomorphic

All these graphs are similar
in determining whether
they are planar or not

Planar Graph (7A) 9 Young Won Lim
6/2/18

All these graphs are similar
in determining whether
they are planar or not

Non-planar graph examples – K
3,3

homeomorphicisomorphic

Non-planar Non-planar Non-planar

Planar Graph (7A) 10 Young Won Lim
6/2/18

Non-planar graph examples – embedding K
3,3

Planar Non-planar

contains K
3,3

contains K
3,3

contains a
subdivision of K

3,3

non-planar
subgraph

non-planar
subgraph

non-planar
subgraph

Non-planar Non-planar

Planar Graph (7A) 11 Young Won Lim
6/2/18

Subdivision and Smoothing

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Smoothing

Planar Graph (7A) 12 Young Won Lim
6/2/18

Homeomorphism

https://en.wikipedia.org/wiki/Planar_graph

two graphs G
1
 and G

2
 are homeomorphic

if there is a graph isomorphism
from some subdivision of G

1

to some subdivision of G
2

homeo (identity, sameness)

iso (equal)

Planar Graph (7A) 13 Young Won Lim
6/2/18

Homeomorphism Examples

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Subdivision

isomorphichomeomorphic
Subdivision

Planar Graph (7A) 14 Young Won Lim
6/2/18

Embedding on a surface

https://en.wikipedia.org/wiki/Planar_graph

subdividing a graph preserves planarity.

Kuratowski's theorem states that

 a finite graph is planar if and only if
it contains no subgraph homeomorphic
to K

5
 (complete graph on five vertices) or

K
3,3

 (complete bipartite graph on six vertices,

three of which connect to each of the other three).

In fact, a graph homeomorphic to K
5
 or K

3,3

is called a Kuratowski subgraph.

Planar Graph (7A) 15 Young Won Lim
6/2/18

Kuratowski’s Theorem

https://en.wikipedia.org/wiki/Planar_graph

A finite graph is planar if and only if
it does not contain a subgraph
that is a subdivision of the complete graph K

5
 or

the complete bipartite graph K
3,3

(utility graph).

A subdivision of a graph results
from inserting vertices into edges
(changing an edge •——• to •—•—•)
zero or more times.

Planar Graph (7A) 16 Young Won Lim
6/2/18

Kuratowski’s Theorem

https://en.wikipedia.org/wiki/Planar_graph

Planar Graph (7A) 17 Young Won Lim
6/2/18

A subdivision of K
3,3

Planar Graph (7A) 18 Young Won Lim
6/2/18

Euler’s Formula

https://en.wikipedia.org/wiki/Planar_graph

Euler's formula states that if a finite, connected, planar
graph is drawn in the plane without any edge intersections,
and v is the number of vertices, e is the number of edges
and f is the number of faces (regions bounded by edges,
including the outer, infinitely large region), then

 v − e + f = 2

Hamiltonian Cycles (3A) 29 Young Won Lim
6/2/18

Minimum Cut

https://en.wikipedia.org/wiki/Cut_(graph_theory)

A cut is minimum if the size or weight of the cut
is not larger than the size of any other cut.

the size of this cut is 2,
and there is no cut of size 1
because the graph is bridgeless.

Hamiltonian Cycles (3A) 30 Young Won Lim
6/2/18

Maximum Cut

https://en.wikipedia.org/wiki/Cut_(graph_theory)

A cut is maximum if the size of the cut
is not smaller than the size of any other cut.

the size of the cut is equal to 5,
and there is no cut of size 6,
or |E| (the number of edges),
because the graph is not bipartite
(there is an odd cycle).

Hamiltonian Cycles (3A) 31 Young Won Lim
6/2/18

Infinite Graphs and Tessellations

https://en.wikipedia.org/wiki/Dual_graph

The concept of duality applies as well
to infinite graphs embedded in the plane
as it does to finite graphs.

When all faces are bounded regions
surrounded by a cycle of the graph,
an infinite planar graph embedding
can also be viewed as a tessellation of the plane,
a covering of the plane by closed disks
(the tiles of the tessellation) whose interiors
(the faces of the embedding) are disjoint open disks.

Young Won Lim
6/2/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
6/2/18

Tree Overview (1A)

Young Won Lim
6/2/18

 Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Tree Overview (1A) 3 Young Won Lim
6/2/18

Tree

https://en.wikipedia.org/wiki/Tree_(graph_theory)

a tree is an undirected graph in which
any two vertices are connected
by exactly one path.

any acyclic connected graph is a tree.

A forest is a disjoint union of trees.

Tree Overview (1A) 4 Young Won Lim
6/2/18

 Tree Condition (1)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A tree is an undirected graph G

that satisfies any of the following equivalent conditions:

G is connected and has no cycles.

G is acyclic, and a simple cycle is formed if any edge is added to G.

G is connected, but is not connected if any single edge is removed from G.

G is connected and the 3-vertex complete graph K
3
 is not a minor of G.

Any two vertices in G can be connected by a unique simple path.

Tree Overview (1A) 5 Young Won Lim
6/2/18

 Tree Condition (2)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

G is acyclic, and a simple cycle is
formed if any edge is added to G.

G is connected, but is not connected
if any single edge is removed from G.

Tree Overview (1A) 6 Young Won Lim
6/2/18

 Tree Condition (3)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

1 2

3
4

5

6

p
1,2

1 2

3
4

5

6

p
1,3

1 2

3
4

5

6

p
1,4

1 2

3
4

5

6

p
1,5

1 2

3
4

5

6

p
1,6

1 2

3
4

5

6

1 2

3
4

5

6

1 2

3
4

5

6

p2,4

1 2

3
4

5

6

p
2,5 p2,6p

2,3

Any two vertices in G
can be connected by a
unique simple path.

Tree Overview (1A) 7 Young Won Lim
6/2/18

 Tree Condition (4)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

1 2

3
4

5

6

1 2

3
4

5

6

1 2

3
4

5

6

1 2

3
4

5

6

1 2

3
4

5

6

1 2

3
4

5

6

p3,6
p

3,4 p
3,5

p
4,5 p

4,6 p
5,6

Any two vertices in G
can be connected by a
unique simple path.

Tree Overview (1A) 8 Young Won Lim
6/2/18

 Tree Condition (5)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

If G has finitely many vertices,
say n vertices, then the above statements
are also equivalent to any of the following conditions:

G is connected and has n − 1 edges.

G has no simple cycles and has n − 1 edges.

1 2

3
4

5

6

e
1

e
2

e
3

e4

e
5

e

1
e

2
e

3
en−1v

1
v

2
v

3
vn

4 5 6 7

2 3

1e
1

e2

e3 e4 e5 e6

Tree Overview (1A) 9 Young Won Lim
6/2/18

 Tree Condition (6)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

G is connected and the 3-vertex
complete graph K

3
is not a minor of G.

deleting edges
deleting vertices

contracting edges

Tree Overview (1A) 10 Young Won Lim
6/2/18

Graph Minor

https://en.wikipedia.org/wiki/Graph_minor

In graph theory, an undirected graph H
is called a minor of the graph G
if H can be formed from G
by deleting edges and vertices and
by contracting edges.

deleting a vertex

contracting an edge

deleting an edge

deleting a vertex

deleting an edge

Tree Overview (1A) 11 Young Won Lim
6/2/18

Binary Tree

https://en.wikipedia.org/wiki/Binary_tree

a binary tree is a tree data structure in which
each node has at most two children,
(the left child, the right child)

A recursive definition using just set theory notions
is that a (non-empty) binary tree is a tuple (L, S, R),
where L and R are binary trees or the empty set and
S is a singleton set.

Some authors allow the binary tree
to be the empty set as well.

Tree Overview (1A) 12 Young Won Lim
6/2/18

Full Binary Tree

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A rooted binary tree has a root node and
every node has at most two children.

A full binary tree is
(proper, plane binary tree)
a tree in which every node
has either 0 or 2 children.

Tree Overview (1A) 13 Young Won Lim
6/2/18

Perfect Binary Trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A perfect binary tree is a binary tree in which
all interior nodes have two children and
all leaves have the same depth or same level.

also called a complete binary tree

the same depth (level).

two children

Tree Overview (1A) 14 Young Won Lim
6/2/18

Complete Binary Trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

In a complete binary tree
every level, except possibly the last,
is completely filled,
and all nodes in the last level are
as far left as possible.

An alternative definition is a perfect tree
whose rightmost leaves (perhaps all)
have been removed.

Tree Overview (1A) 15 Young Won Lim
6/2/18

Complete Binary Trees and Linear Arrays

https://en.wikipedia.org/wiki/Tree_(graph_theory)

8 9 10 11

4 5 6 7

2 3

11

2

3

4

5

6

7

8

9

10

11

contiguous
no blanks

→ complete

2⋅i

2⋅i + 1

Left child

Right child

A complete binary tree can
be efficiently represented
using an array.

Tree Overview (1A) 16 Young Won Lim
6/2/18

Different use of compute binary trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Some authors use the term complete
to refer instead to a perfect binary tree
as defined above,
in which case they call this type of tree
an almost complete binary tree or
nearly complete binary tree.

complete

perfect

nearly complete

complete

Tree Overview (1A) 17 Young Won Lim
6/2/18

Properties of Binary Trees (1)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A complete binary tree
can have between 1 and 2m-1 nodes
at the last level m.

Level l=1

Level l=2

Level l=3

Level l=4

20

21

22

23

height h=0

height h=1

height h=2

height h=3

Tree Overview (1A) 18 Young Won Lim
6/2/18

Properties of Binary Trees (2)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

The number of nodes n in a full binary tree, is
at least n = 2h + 1 and
at most n = 2h+1 − 1,
where h is the height of the tree.

A tree consisting of only a root node
has a height of 0.

h=0

h=1

h=2

h=3

Tree Overview (1A) 19 Young Won Lim
6/2/18

Properties of Binary Trees (3)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

20

21-1

22-1

23-1

21

22

23

h=0

h=1

h=2

h=3

l=1

l=1

l=2

l=1

l=2

l=3

l=1

l=2

l=3

l=4

2h

2h-1

2h-1

2h-1

2h

2h

2h

2h+1–1

2h+1–1

2h+1–1

2h+1–1

Tree Overview (1A) 20 Young Won Lim
6/2/18

Properties of Binary Trees (4)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

The number of leaf nodes is m
in a perfect binary tree,
is m=(n+1)/2

because the number of non-leaf
(internal) nodes is m–1

This means that a perfect binary tree
with m leaves has
n = 2m–1 nodes.

20

21-1

22-1

23-1

21

22

23

m

m-1

m-1

m-1

m

m

m

Young Won Lim
6/2/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
6/2/18

Binary Search Tree (3A)

Young Won Lim
6/2/18

 Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Binary Search Tree (3A) 3 Young Won Lim
6/2/18

Binary Search Tree (1)

https://en.wikipedia.org/wiki/Binary_search_tree

Binary search trees (BST),
ordered binary trees
sorted binary trees

are a particular type of container:
data structures that store "items"
(such as numbers, names etc.) in memory.

They allow fast lookup, addition and removal of items
can be used to implement either dynamic sets of items
lookup tables that allow finding an item by its key
(e.g., finding the phone number of a person by name).

Binary Search Tree (3A) 4 Young Won Lim
6/2/18

Binary Search Tree (2)

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order
lookup operations can use
the principle of binary search

allowing to skip searching half of the tree
each operation (lookup, insertion or deletion)
takes time proportional to log n

much better than the linear time
but slower than the corresponding operations
on hash tables.

Binary Search Tree (3A) 5 Young Won Lim
6/2/18

Binary Search Tree (3)

https://en.wikipedia.org/wiki/Binary_search_tree

when looking for a key in a tree
or looking for a place to insert a new key,
they traverse the tree from root to leaf,
making comparisons to keys stored in the nodes
deciding to continue in the left or right subtrees,
on the basis of the comparison.

Binary Search Tree (3A) 6 Young Won Lim
6/2/18

Node, Left Child, Right Child

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

3 < 8 < 10

1 < 3 < 6 10 < 14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 7 Young Won Lim
6/2/18

Subtrees

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 8 Young Won Lim
6/2/18

Node, Left Subtree, Right Subtree

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

8

3

6a

4 7

10

13

141

3

6a

4 7

1

10

13

14

6

4 7 13

14

Binary Search Tree (3A) 9 Young Won Lim
6/2/18

In-Order Traversal

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 10 Young Won Lim
6/2/18

Successor

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

Binary Search Tree (3A) 11 Young Won Lim
6/2/18

Successor

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

If the right child exists,
then the minimum

in the right subtree

– the rightmost node

the parent of the farthest
node that can be reached
by following only right
edges backward.

Binary Search Tree (3A) 12 Young Won Lim
6/2/18

Predecessor

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14

8

3

6a

4 7

10

d

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

8

3

6a

4 7

10

13

141

Binary Search Tree (3A) 13 Young Won Lim
6/2/18

Different BST’s with the same data

6

3

41

8

107

13

14 1

6

74

13

1410

3

8

4

3

1

6

14

7

10

8 13

1, 3, 4, 6, 7, 8, 10, 13, 14 1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 14 Young Won Lim
6/2/18

Unbalanced BSTs

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14

4

6

7

8

10

13

14

13

14

10

8

7

6

4

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 15 Young Won Lim
6/2/18

Binary Search on a Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_algorithm

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (3A) 16 Young Won Lim
6/2/18

Insertion

https://en.wikipedia.org/wiki/Morphism

Insertion begins as a search would begin;

if the key is not equal to that of the root,

we search the left or right subtrees as before.

Eventually, we will reach an external node

and add the new key-value pair

(here encoded as a record 'newNode')

as its right or left child,

depending on the node's key.

In other words, we examine the root

and recursively insert the new node

to the left subtree if its key is less than that of the root,

or the right subtree if its key is greater than or equal to the root.

Binary Search Tree (3A) 17 Young Won Lim
6/2/18

Deletion

https://en.wikipedia.org/wiki/Morphism

1. Deleting a node with no children:
simply remove the node from the tree.

2. Deleting a node with one child:
remove the node and replace it with its child.

3. Deleting a node with two children:
call the node to be deleted D.
Do not delete D.
Instead, choose either its in-order predecessor node
or its in-order successor node as replacement node E.
Copy the user values of E to D
If E does not have a child

simply remove E from its previous parent G.
If E has a child, say F, it is a right child.

Replace E with F at E's parent.

Binary Search Tree (3A) 18 Young Won Lim
6/2/18

Deletion

https://en.wikipedia.org/wiki/Morphism

Young Won Lim
6/2/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
6/2/18

Finite State Machine (1A)

Young Won Lim
6/2/18

 Copyright (c) 2013 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

FSM (1A) 3 Young Won Lim
6/2/18

FSM and Digital Logic Circuits

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

 Latch

 D FlipFlop

 Registers

 Timing

 Mealy machine

 Moore machine

 Traffic Lights Examples

FSM (1A) 4 Young Won Lim
6/2/18

NOR-based SR Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

S=0

R=1

RESET Q=0

Q=1

S=1

R=0

SET Q=1

Q=0

1

0

0

1 1

0

0

1

FSM (1A) 5 Young Won Lim
6/2/18

NOR-based SR Latch – HOLD

S=0

R=0

HOLD Q=old Q

Q=old Q

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

S=0

R=0

HOLD Q=old Q

Q=old Q

0

0

0

1 0

0

0

1→0

→1 →0

→1

FSM (1A) 6 Young Won Lim
6/2/18

NOR-based SR Latch

R

S

Q

SET
begins

RST
begins

SET
begins

RST
begins

S=1
R=0

S=0
R=1

S=1
R=0

S=0
R=1

S=0
R=0

S=0
R=0

S=0
R=0

S=0
R=0

Hold
begins

Hold
begins

Hold
begins

Hold
begins

S=1

R=0

SET Q=1

Q=0

S=0

R=1

RESET Q=0

Q=1

S=0

R=0

HOLD Q=old Q

Q=old Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 7 Young Won Lim
6/2/18

NOR-based SR Latch States

S=1

R=0

SET

Q=1

Q=0

S=0

R=1

RESETQ=0

Q=1

S=0

R=0

HOLD Q=old Q

Q=old Q

S=1

R=0

S=0

R=1

S=0

R=0

S=0

R=1

S=0

R=0

S=1

R=0

Q=1

Q=0

Q=0

Q=1

S

R Q

Q

SETRESETHOLD NOR based SR Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 8 Young Won Lim
6/2/18

0 1

SR Latch States

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

SET SETHOLD, HOLD,

RESET

RESET S=1

R=0

SET

S=0

R=1

RESET

S=0

R=0

HOLD Q=old Q

Q=old Q

Q=1

Q=0

Q=0

Q=1

FSM (1A) 9 Young Won Lim
6/2/18

NOR-based D Latch – SET / RESET

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

C

C

1

1

1

1

0

0

1

1

0

S=1

R=0

SET Q=1

Q=0

S=0

R=1

RESET Q=0

Q=1

1

0

0

1

S

R

S

R

D=1

C=1

D=0

C=1

0

FSM (1A) 10 Young Won Lim
6/2/18

NOR-based D Latch – HOLD

C

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

C

0

0

0

0

0

0

0

1

S

R

S

R

S=0

R=0

HOLD Q=old Q

Q=old Q

S=0

R=0

HOLD Q=old Q

Q=old Q

D=X

C=0

D=X

C=0

FSM (1A) 11 Young Won Lim
6/2/18

NOR-based D Latch – Set / Reset / Hold

C

D

Q

transparent opaque transparent opaque

SET
begins

RST
begins

SET
begins

RST
begins

Hold
begins

Hold
begins

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 12 Young Won Lim
6/2/18

NOR-based D Latch – transparent / opaque

C

D

Q

transparent opaque transparent opaque

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D→Q

input→output input→output

D→Q

FSM (1A) 13 Young Won Lim
6/2/18

NOR-based D Latch States

Q=1

Q=0

Q=0

Q=1

C=1

D=1

C=1

D=0

C=0

D=X

C=1

D=0

C=0

D=X

C=1

D=1

C

D

C Q

Q

SETRESETHOLD NOR based D Latch

Q

Q

SETRESETHOLD

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 14 Young Won Lim
6/2/18

Master-Slave D FlipFlop

D

Y

Y

Q

D

Q

Master D Latch

Slave D Latch

Master-Slave D F/F

Y

the hold output
of the master is
transparently
reaches the
output of the
slave

this value is
held for another
half period

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 15 Young Won Lim
6/2/18

Master-Slave D FlipFlop – Falling Edge

Master D Latch

Slave D Latch

D

C Q

Q D

C Q

Q

D

Q

Q

D

CK

Q

Q

D

CK

Q

D

CK

Q

Y

Y

CK

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 16 Young Won Lim
6/2/18

D Latch & D FlipFlop

Level Sensitive D Latch

Edge Sensitive D FlipFlop

D

Q

Q

CK

D

CK

Q

D

Q

Q

C

D

Q

CK=1 transparent
CK=0 opaque

CK=1→0 transparent
else opaque

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 17 Young Won Lim
6/2/18

D FlipFlop with Enable (1)

D

Q

Q

0

1D

EN

Q

Q

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

EN=1 Regular D Flip Flop
Sampling D input @ posedge of CK

EN=0 Holding D Flip Flop
Sampling Q output @ posedge of CK D

Q

Q

0

1D

EN

Q

Q

CK

1

0

FSM (1A) 18 Young Won Lim
6/2/18

D FlipFlop with Enable (2)

D

Q

Q

EN

D

Q

Q

0

1D

EN

Q

Q

CK

D

EN

Q

CK

D

EN

Q

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (1A) 19 Young Won Lim
6/2/18

Registers

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

D Q

D Q

D Q

D Q

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

CLK

Register

In
p

u
ts

 t
o

 F
F

s

O
u

tp
u

ts
 o

f
F

F
s

FSM (1A) 20 Young Won Lim
6/2/18

FF Timing (Ideal)

D
3:0

Q
3:0

Inputs to FFs

Outputs of FFs

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

FSM (1A) 21 Young Won Lim
6/2/18

States

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

(t+1)th
edge

(t+2)th
edge

(t+3)th
edge

(t+4)th
edge

(t+5)th

edge
(t)th
edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Inputs Outputs

State

FSM (1A) 22 Young Won Lim
6/2/18

Sequence of States

? ? ? ? ? ?

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

Find inputs to FFs

which will make outputs
in this sequence

(t+1)th
edge

(t+2)th
edge

(t+3)th
edge

(t+4)th
edge

(t+5)th

edge
(t)th
edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Inputs Outputs

State

FSM (1A) 23 Young Won Lim
6/2/18

How to change current state

NextSt

CurrSt

Compute NextSt from
CurrSt, Ta, Tb

This NextSt becomes
a new CurrSt

Compute NextSt

CurrSt <= NextSt

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Current
State

Next
State

comb

Current
State

Next
State

input

FSM (1A) 24 Young Won Lim
6/2/18

Finding FF Inputs

D Q

D Q

D Q

D Q

Comb
Next
State
Logic

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

Inputs
to FSM

During the tth clock edge period,

Compute the next state Q(t+1)
using the current state Q(t) and
other external inputs

Place it to FF inputs

After the next clock edge, (t+1)th,
the computed next state Q(t+1)
becomes the current state

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Current
State

Next
State

FSM (1A) 25 Young Won Lim
6/2/18

Method of Finding FF Inputs

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5) Q(t+6)

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

Inputs

Find the boolean functions
D3, D2, D1, D0
in terms of Q3, Q2, Q1, Q0,
and external inputs
for all possible cases.

Q(t)

Inputs

+

Q(t+1)

Current
State

Next
State

input

Q(t) Q(t+1)

FSM (1A) 26 Young Won Lim
6/2/18

State Transition

Q(t+1)

Q(t+1)Q(t)

D
3:0

Q
3:0

Inputs

Q(t+1)

Q(t)

Inputs

Compute the next state
using the current state
and external inputs
in the current clock cycle

After the next clock edge,
the computed next state (FF Inputs)
becomes the current state (FF Outputs)https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

Register

Current
State

Next
State

comb

FSM (1A) 27 Young Won Lim
6/2/18

Moore FSM

1

clock

State
Register

Next State
Combinational

Logic

Output
Combinational

Logic
D Q D Q D Q

D Q D Q D Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Current
State

Next
State

FSM
Outputs

FSM
Inputs

FSM (1A) 28 Young Won Lim
6/2/18

Mealy FSM

1

clock

State
Register

Next State
Combinational

Logic

Output
Combinational

Logic
D QD QD Q

D Q D Q D Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Current
State

Next
State

FSM
Outputs

FSM
Inputs

FSM (1A) 29 Young Won Lim
6/2/18

Traffic Lights Example

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 30 Young Won Lim
6/2/18

FSM Inputs and Outputs

L
A

L
A

L
B

L
B

T
B

T
B

T
A

T
A

Traffic Lights - Outputs

L
A

L
B

Sensor - Inputs

T
B

T
A

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 31 Young Won Lim
6/2/18

States

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

T
B

T
A

=0

=0

T
A

=1

T
B =1

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 32 Young Won Lim
6/2/18

Moore FSM State Transition Table

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

S
1
S

0

S
1
S

0
T

B

S
1
S

0
T

B

S '
1

= S
1
S

0
+ S

1
S

0

= S
1
+ S

0

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

S
1
S

0
T

A

S
1
S

0
T

B

S '
0

= S
1
S

0
T

A
+ S

1
S

0
T

B

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 33 Young Won Lim
6/2/18

States

00
01
10

0

0

1

1

1 1 0

0 1 0

1 0 1

0 0 0

S
2
L

A1
L

A0
L

B1

1

1

0

0

S
1

1

0

0

0

L
B0

1 1

0 1

1 0

0 0

S
2
L

A1

1

1

0

0

S
1

L
A1
=S

1

1 0

0 0

1 1

0 0

S
2

L
A0

1

1

0

0

S
1

L
A0
=S

1
S

0

0

0

1

1

1

0

1

0

S
2

L
B1

1

1

0

0

S
1

1

0

1

0

S
2

1

1

0

0

S
1

1

0

0

0

L
B0

L
B1
=S

1
L

A0
=S

1
S

0

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 34 Young Won Lim
6/2/18

Moore FSM (1)

D Q

D Q

S'
1

S'
0

S
1

S
0

T
A

T
B

L
A1

L
A0

L
B1

L
B0

S
1

S
0

clk

Current
State

Next
State

inputs

outputs

states
00: S0
01: S1
10: S2
11: S3

outputs (LA/LB)
00: Green
01: Yellow
10: Red
11: X

NextSt

CurrSt

Compute NextSt from
CurrSt, Ta, Tb

This NextSt becomes
a new CurrSt

Compute NextSt

CurrSt <= NextSt

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 35 Young Won Lim
6/2/18

Moore FSM

D Q

D Q

S'
1

S'
0

S
1

S
0

T
A

T
B

S'
1

= S
1
+ S

0

S '
0

= S
1
S

0
T

A
+ S

1
S

0
T

B

L
A1

L
A0

L
B1

L
B0

L
A1
=S

1

L
A0
=S

1
S

0

L
B1
=S

1

L
B0
=S

1
S

0

Next States

Outputs

S'
0
= S

1
S

0
T

A

+ S
1
S

0
T

B

S '
1
= S

1
+ S

0

Inputs T
A

T
B

Current State S
1

S
0

S
1

S
0

Current State S
1

S
0

L
A1
=S

1

L
A0
=S

1
S

0

L
B1
=S

1

L
B0
=S

1
S

0

clk

Current
State

Next
State

inputs

outputs

states
00: S0
01: S1
10: S2
11: S3

outputs (LA/LB)
00: Green
01: Yellow
10: Red
11: X https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM (1A) 36 Young Won Lim
6/2/18

State Diagram

https://en.wikipedia.org/wiki/Finite-state_machine

FSM (1A) 37 Young Won Lim
6/2/18

Acceptors and Recognizers

https://en.wikipedia.org/wiki/Finite-state_machine

FSM (1A) 38 Young Won Lim
6/2/18

Classifiers and Transducers

https://en.wikipedia.org/wiki/Finite-state_machine

A classifier is a generalization of a finite state machine that,

similar to an acceptor, produces a single output on termination

but has more than two terminal states

Transducers generate output based on a given input and/or a state using
actions. They are used for control applications and in the field of
computational linguistics.

FSM (1A) 39 Young Won Lim
6/2/18

Moore machine

https://en.wikipedia.org/wiki/State_diagram

https://en.wikipedia.org/wiki/Finite-state_transducer

FSM (1A) 40 Young Won Lim
6/2/18

Mealy machine

https://en.wikipedia.org/wiki/Mealy_machine

https://en.wikipedia.org/wiki/State_diagram

FSM (1A) 41 Young Won Lim
6/2/18

State Transition Table

https://en.wikipedia.org/wiki/State_transition_table

FSM (1A) 42 Young Won Lim
6/2/18

Mathematical Models for acceptors

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A deterministic finite state machine or

acceptor deterministic finite state machine is

a quintuple (Σ, S, s
0
, δ, F), where:

● Σ is the input alphabet (a finite, non-empty set of symbols).
● S is a finite, non-empty set of states.

● s
0
 is an initial state, an element of S.

● δ is the state-transition function: δ : S × Σ → S
● F is the set of final states, a (possibly empty) subset of S.

FSM (1A) 43 Young Won Lim
6/2/18

Deterministic Finite Automaton Example (1)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The following example is of a DFA M, with a binary alphabet,

which requires that the input contains an even number of 0s.

M = (Q, Σ, δ, q0, F) where

 Q = {S1, S2},

 Σ = {0, 1},

 q0 = S1,

 F = {S1}, and

 δ is defined by the following state transition table:

FSM (1A) 44 Young Won Lim
6/2/18

Deterministic Finite Automaton Example (2)

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

The state S1 represents that there has been an
even number of 0s in the input so far, while S2
signifies an odd number.

A 1 in the input does not change the state of the
automaton.

When the input ends, the state will show whether
the input contained an even number of 0s or not.

If the input did contain an even number of 0s, M will
finish in state S1, an accepting state, so the input
string will be accepted.

The language recognized by M is the regular
language given by the regular expression

((1*) 0 (1*) 0 (1*))*, where "*" is the Kleene star,
e.g., 1* denotes any number (possibly zero) of
consecutive ones.

FSM (1A) 45 Young Won Lim
6/2/18

Mathematical Model for transducers (1)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

A finite-state transducer is a sextuple (Σ, Γ, S, s0, δ, ω), where:

Σ is the input alphabet (a finite non-empty set of symbols).

Γ is the output alphabet (a finite, non-empty set of symbols).

S is a finite, non-empty set of states.

s0 is the initial state, an element of S.

ω is the output function.

FSM (1A) 46 Young Won Lim
6/2/18

Mathematical Model for transducers (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

If the output function is a function of a state and input alphabet

(ω : S × Σ → Γ) that definition corresponds to the Mealy model,

and can be modelled as a Mealy machine.

If the output function depends only on a state (ω : S → Γ)

that definition corresponds to the Moore model,

and can be modelled as a Moore machine.

A finite-state machine with no output function at all is known as a
semiautomaton or transition system.

Young Won Lim
6/2/18

References

[1] http://en.wikipedia.org/
[2]

