
Young Won Lim
5/25/18

Eulerian Cycle (2A)

Young Won Lim
5/25/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Eulerian Cycles (2A) 3 Young Won Lim
5/25/18

Path and Trail

https://en.wikipedia.org/wiki/Eulerian_path

A path is a trail in which all vertices are distinct.
(except possibly the first and last)

A trail is a walk in which all edges are distinct.

Vertices Edges

 Walk may may (Closed/Open)

repeat repeat

 Trail may cannot (Open)

 repeat repeat

 Path cannot cannot (Open)

 repeat repeat

 Circuit may cannot (Closed)

 repeat repeat

Cycle cannot cannot (Closed)

 repeat repeat

Eulerian Cycles (2A) 4 Young Won Lim
5/25/18

Simple Paths and Cycles

https://en.wikipedia.org/wiki/Eulerian_path

Most literatures require that all of the edges and vertices of a
path be distinct from one another.

But, some do not require this and instead use the term simple
path to refer to a path which contains no repeated vertices.

A simple cycle may be defined as a closed walk with no
repetitions of vertices and edges allowed, other than the
repetition of the starting and ending vertex

There is considerable variation of terminology!!!
Make sure which set of definitions are used...

Eulerian Cycles (2A) 5 Young Won Lim
5/25/18

Simple Paths and Cycles

path cycle

simple
path

simple
cycle

trail circuit

path cycle

Most literatures some other literatures

narrow sense path & cycle wide sense path & cycle

Eulerian Cycles (2A) 6 Young Won Lim
5/25/18

Paths and Cycles

v0, e1, v1, e2, ⋯ , ek , vk

v0

e
1

v1

e
2

v2

e
3

v3

ek

vk

⋯

v0, e1, v1, e2, ⋯ , ek , vk (v0 = vk)

path

cycle

v0, e1, v1, e2, ⋯ , ek , vk

v0, e1, v1, e2, ⋯ , ek , vk (v0 = vk)

path

cycle

(v0 ≠ vk)

path

cycle

cyclepath

One of a kind

Two different kinds

Eulerian Cycles (2A) 7 Young Won Lim
5/25/18

Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

Some people reserve the terms path and cycle
to mean non-self-intersecting path and cycle.

A (potentially) self-intersecting path is known
as a trail or an open walk;

and a (potentially) self-intersecting cycle,
a circuit or a closed walk.

This ambiguity can be avoided by using the terms
Eulerian trail and Eulerian circuit
when self-intersection is allowed

no repeating vertices

repeating vertices

repeating vertices

repeating vertices

Eulerian Cycles (2A) 37 Young Won Lim
5/25/18

Degree of a vertex

https://en.wikipedia.org/wiki/Degree_(graph_theory)

 the degree (or valency) of a vertex is
the number of edges incident to the vertex,
with loops counted twice.

The degree of a vertex v is denoted deg(v)
the maximum degree of a graph G, denoted by Δ(G)
the minimum degree of a graph, denoted by δ(G)

Δ(G) = 5
δ(G) = 0

In a regular graph, all degrees are the same

3

3

2
1

2

5
0

a

b

c
d

e

f
g

Eulerian Cycles (2A) 38 Young Won Lim
5/25/18

Regular Graphs

https://en.wikipedia.org/wiki/Regular_graph

a regular graph is a graph where each vertex has the
same number of neighbors; i.e. every vertex has the
same degree or valency.

Eulerian Cycles (2A) 39 Young Won Lim
5/25/18

Handshake Lemma

https://en.wikipedia.org/wiki/Degree_(graph_theory)

The degree sum formula states that,
given a graph G = (V , E)

This statement (as well as the degree sum formula) is
known as the handshaking lemma.

3

3

2
1

2

5
0

a

b

c
d

e

f
g

deg(a) = 1

deg(b) = 3

deg(c) = 3

deg (d) = 2

deg (e) = 5

deg (f) = 2

deg (g) = 0

16

|E| = 8

2|E| = 16

Eulerian Cycles (2A) 40 Young Won Lim
5/25/18

Adding odd vertex

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A) 41 Young Won Lim
5/25/18

The number of odd vertices

Even vertices : Odd vertices :

in any graph, the number of
vertices with odd degree is even.

{x
1,
x

2,
⋯ , xm} {y

1,
y

2,
⋯ , yn}

S = deg(x
1
) + deg(x

2
) + ⋯ + deg(xm) T = deg(y

1
) + deg(y

2
) + ⋯ + deg(yn)

deg(xi) : even deg(yi) : odd

S : even

S+T : even

T : even = ∑ n odd numbers

S = even + even + ⋯ + even T = odd + odd + ⋯ + odd

n : even

Young Won Lim
5/25/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/24/18

Graph Search (6A)

Young Won Lim
5/24/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Graph Search (6A) 3 Young Won Lim
5/24/18

Graph Traversal

https://en.wikipedia.org/wiki/Graph_traversal

graph traversal (graph search) refers to
the process of visiting (checking and/or updating)
each vertex in a graph.

Such traversals are classified
by the order in which the vertices are visited.

Tree traversal is a special case of graph traversal.

Graph Search (6A) 4 Young Won Lim
5/24/18

DFS

https://en.wikipedia.org/wiki/Graph_traversal

A depth-first search (DFS)
is an algorithm for traversing a finite graph.

DFS visits the child vertices
before visiting the sibling vertices;

that is, it traverses the depth of any particular path
before exploring its breadth.

A stack (often the program's call stack via recursion) is
generally used when implementing the algorithm.

Graph Search (6A) 5 Young Won Lim
5/24/18

DFS Backtrack

https://en.wikipedia.org/wiki/Graph_traversal

The algorithm begins with a chosen "root" vertex;

it then iteratively transitions from the current vertex to an
adjacent, unvisited vertex, until it can no longer find an
unexplored vertex to transition to from its current location.

The algorithm then backtracks along previously visited
vertices, until it finds a vertex connected to yet more
uncharted territory.

It will then proceed down the new path as it had before,
backtracking as it encounters dead-ends, and ending only
when the algorithm has backtracked past the original "root"
vertex from the very first step.

Graph Search (6A) 6 Young Won Lim
5/24/18

BFS

https://en.wikipedia.org/wiki/Graph_traversal

A breadth-first search (BFS) is
another technique for traversing a finite graph.

BFS visits the neighbor vertices
before visiting the child vertices

a queue is used in the search process

This algorithm is often used to find
the shortest path from one vertex to another.

Graph Search (6A) 7 Young Won Lim
5/24/18

Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

Graph Search (6A) 8 Young Won Lim
5/24/18

Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

Graph Search (6A) 9 Young Won Lim
5/24/18

General Graph Search Algorithm – 1

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Search(Start, isGoal, Criteria)

insert(Start, Open);

repeat

if (empty(Open)) then return fail;

select node from Open using Criteria;

mark node as visited;

if (isGoal(node)) then return node;

for each child of node do

if (child not already visited)
then insert(child, Open);

Graph Search (6A) 10 Young Won Lim
5/24/18

DFS

OPEN

x

1 2 3

3 1

2

2x

CLOSED

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

pop

push

unvisited children : 1, 3

“visited”

Graph Search (6A) 11 Young Won Lim
5/24/18

BFS

y

ba

ba

OPEN

c

cy

CLOSED

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

c

deQ

enQ

unvisited children : 1, 3

marked “ visited”

Graph Search (6A) 12 Young Won Lim
5/24/18

Possible duplication

DFS BFS Stack Queue

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

possible duplication

- not yet expanded

possible duplication

- not yet expanded

Graph Search (6A) 13 Young Won Lim
5/24/18

Must check before expansion

DFS BFS Stack Queue

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

must check if the selected
node is already “visited”

must check if the selected
node is already “visited”

possible duplication possible duplication

must not
expanded
twice

must not
expanded
twice

Graph Search (6A) 14 Young Won Lim
5/24/18

General Graph Search Algorithm – 1

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Search(Start, isGoal, Criteria)

insert(Start, Open);

repeat

if (empty(Open)) then return fail;

select node from Open using Criteria;

mark node as visited;

if (isGoal(node)) then return node;

for each child of node do

if (child not already visited)
then insert(child, Open);

Remedy 1:

check if visited when selecting

Remedy 2:

check redundant nodes

Graph Search (6A) 15 Young Won Lim
5/24/18

DFS-1 (Depth First Search)

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Open list – use a stack

Select with Criteria – pop

DFS(Start, isGoal)

push(Start, Open); // push

repeat

if (empty(Open)) then return fail;

node := pop(Open); // pop

mark node as visited;

if (isGoal(node)) then return node;

for each child of node do

if (child not already visited) then

push(child, Open); // push

Graph Search (6A) 16 Young Won Lim
5/24/18

DFS-1 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cba cbbed cbbeeh

cbbeei cbbeef cbbeegbe

a d h

i f e

push

push push

push

push
push

pop pop pop

pop pop pop

Graph Search (6A) 17 Young Won Lim
5/24/18

DFS-1 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cbbeegb cbbeegc cbbeegg

cbbeeg

b c g

c,b,b,e,e,g all marked

a

d h

ie

fb

gc

s

push push

pop pop pop

pop

Graph Search (6A) 18 Young Won Lim
5/24/18

BFS-1 (Breadth First Search)

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Open list – use a FIFO

Select with Criteria – dequeue

BFS(Start, isGoal)

enqueue(Start, Open); // enqueue

repeat

if (empty(Open)) then return fail;

node := dequeue(Open); // dequeue

mark node as visited;

if (isGoal(node)) then return node;

for each child of node do

if (child not already visited) then

enqueue(child, Open); // enqueue

Graph Search (6A) 19 Young Won Lim
5/24/18

BFS-1 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

abc bcdeb cdebfc

debfcg ebfcghe bfcghef

a b c
deQ deQ deQ

d e b,f
deQ deQ deQ

enQ

enQ

enQ

enQ

enQ

enQ

Graph Search (6A) 20 Young Won Lim
5/24/18

BFS-1 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cghefig hefig efigi

gi

c,g h e,f,i
deQ deQ deQ

g,i
deQ

a

d h

ie

fb

gc

s

Graph Search (6A) 21 Young Won Lim
5/24/18

General Graph Search Algorithm – 2

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows:
unmark all nodes in N;
mark node s;
pred(s) = 0; {that is, it has no predecessor}
LIST = {s}

while LIST ≠ ø do
select a node i in LIST;
if node j is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
add node j to the end of LIST;

else
delete node i from LIST

DFS : select the last node i in LIST;

BFS : select the first node i in LIST; enQdeQ

push
pop

Graph Search (6A) 22 Young Won Lim
5/24/18

Admissible arc

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

pred(j) is a node that precedes j on some path from s;

A node is either marked or unmarked.

Initially only node s is marked.

If a node is marked, it is reachable from node s.

An arc (i,j) A is ∈ admissible
if node i is marked and j is not.

j

i

k

s

marked

unmarked

m

Graph Search (6A) 23 Young Won Lim
5/24/18

LIST

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Before a node is added into LIST,
the node is marked

LIST contains only the marked nodes

thus, the selected node i is marked already

The node j incident to the admissible arc(i,j)
must be unmarked

This node j is marked and added into LIST

In this way, LIST contains
only marked and non-repeating nodes

Check before inserting

j

i

k

s

marked

unmarked

m

Graph Search (6A) 24 Young Won Lim
5/24/18

DFS-2

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows:
unmark all nodes in N;
mark node s;
pred(s) = 0; {that is, it has no predecessor}
push s onto LIST

while LIST ≠ ø do
pop a node i from LIST;
if node j is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
push(node j) onto LIST;

else
delete node i from LIST

Graph Search (6A) 25 Young Won Lim
5/24/18

DFS-2 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cba cbed cbeh

cbei cbef cbeg

a d h

i f g

push

push push

push

push
push

pop pop pop

pop pop pop

Graph Search (6A) 26 Young Won Lim
5/24/18

DFS-2 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cbe cb ce b c

a

d h

ie

fb

gc

s

pop pop pop

a

d h

ie

fb

gc

s

Graph Search (6A) 27 Young Won Lim
5/24/18

BFS-2

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows:
unmark all nodes in N;
mark node s;
pred(s) = 0; {that is, it has no predecessor}
enqueue s onto LIST

while LIST ≠ ø do
dequeue node i from LIST;
if node j is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
enqueue node j onto LIST;

else
delete node i from LIST

Graph Search (6A) 28 Young Won Lim
5/24/18

BFS-2 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

abc bcde cdef

defg efgh fgh

a b c
deQ deQ deQ

d e f
deQ deQ deQ

enQ

enQ

enQ

enQ

enQ

Graph Search (6A) 29 Young Won Lim
5/24/18

BFS-2 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

ghi hi ig h i
deQ deQ deQ

deQ

a

d h

ie

fb

gc

s

enQ

Graph Search (6A) 30 Young Won Lim
5/24/18

DFS Pseudocode

https://en.wikipedia.org/wiki/Graph_traversal

1 procedure DFS(G, v):
2 label v as explored
3 for all edges e in G.incidentEdges(v) do
4 if edge e is unexplored then
5 w ← G.adjacentVertex(v, e)
6 if vertex w is unexplored then
7 label e as a discovered edge
8 recursively call DFS(G, w)
9 else
10 label e as a back edge

Graph Search (6A) 31 Young Won Lim
5/24/18

BFS Pseudocode

https://en.wikipedia.org/wiki/Graph_traversal

1 procedure BFS(G, v):
2 create a queue Q
3 enqueue v onto Q
4 mark v
5 while Q is not empty:
6 t ← Q.dequeue()
7 if t is what we are looking for:
8 return t
9 for all edges e in G.adjacentEdges(t) do
12 o ← G.adjacentVertex(t, e)
13 if o is not marked:
14 mark o
15 enqueue o onto Q
16 return null

Young Won Lim
5/24/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/25/18

Planar Graph (7A)

Young Won Lim
5/25/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Planar Graph (7A) 3 Young Won Lim
5/25/18

Planar Graph

https://en.wikipedia.org/wiki/Planar_graph

a planar graph is a graph that can be embedded in the
plane, i.e., it can be drawn on the plane in such a way
that its edges intersect only at their endpoints.

it can be drawn in such a way that no edges cross each
other. Such a drawing is called a plane graph or planar
embedding of the graph. (planar representation)

A plane graph can be defined as a planar graph with a
mapping from every node to a point on a plane, and from
every edge to a plane curve on that plane,
such that the extreme points of each curve are the points
mapped from its end nodes, and all curves are disjoint
except on their extreme points.

Planar Graph (7A) 4 Young Won Lim
5/25/18

Planar Graph Examples

https://en.wikipedia.org/wiki/Planar_graph

Planar Graph (7A) 5 Young Won Lim
5/25/18

Planar Representation

Discrete Mathematics, Rosen

K
4 Q

3

No crossing No crossing

K
4

Planar Q
3 Planar

Planar Graph (7A) 6 Young Won Lim
5/25/18

Non-planar Graph K
3,3

Discrete Mathematics, Rosen

v
1

v
2

v
3

v
4

v
5

v
6

v
1

v
2v

4

v
5

R
2

R
1

v
1

v
2v

4

v
5

R
1v

3

R
21

R
22

no where v
6

Non-planar

Planar Graph (7A) 7 Young Won Lim
5/25/18

Non-planar graph examples

Planar Non-planar

contains K
3,3

contains K
3,3

contains a
subdivision of K

3,3

non-planar
subgraph

non-planar
subgraph

non-planar
subgraph

Non-planar Non-planar

Planar Graph (7A) 8 Young Won Lim
5/25/18

All these graphs are similar
in determining whether
they are planar or not

Homeomorphic

Planar Graph (7A) 9 Young Won Lim
5/25/18

Subdivision and Smoothing

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Smoothing

Planar Graph (7A) 10 Young Won Lim
5/25/18

Homeomorphism

https://en.wikipedia.org/wiki/Planar_graph

two graphs G
1
 and G

2
 are homeomorphic

if there is a graph isomorphism
from some subdivision of G

1

to some subdivision of G
2

homeo (identity, sameness)

iso (equal)

Planar Graph (7A) 11 Young Won Lim
5/25/18

Homeomorphism Examples

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Subdivision

isomorphichomeomorphic
Subdivision

Planar Graph (7A) 12 Young Won Lim
5/25/18

Embedding on a surface

https://en.wikipedia.org/wiki/Planar_graph

subdividing a graph preserves planarity.

Kuratowski's theorem states that

 a finite graph is planar if and only if
it contains no subgraph homeomorphic
to K

5
 (complete graph on five vertices) or

K
3,3

 (complete bipartite graph on six vertices,

three of which connect to each of the other three).

In fact, a graph homeomorphic to K
5
 or K

3,3

is called a Kuratowski subgraph.

Planar Graph (7A) 13 Young Won Lim
5/25/18

Kuratowski’s Theorem

https://en.wikipedia.org/wiki/Planar_graph

A finite graph is planar if and only if
it does not contain a subgraph
that is a subdivision of the complete graph K

5
 or

the complete bipartite graph K
3,3

(utility graph).

A subdivision of a graph results
from inserting vertices into edges
(changing an edge •——• to •—•—•)
zero or more times.

Planar Graph (7A) 14 Young Won Lim
5/25/18

Kuratowski’s Theorem

https://en.wikipedia.org/wiki/Planar_graph

Planar Graph (7A) 15 Young Won Lim
5/25/18

A subdivision of K
3,3

Planar Graph (7A) 16 Young Won Lim
5/25/18

Euler’s Formula

https://en.wikipedia.org/wiki/Planar_graph

Euler's formula states that if a finite, connected, planar
graph is drawn in the plane without any edge intersections,
and v is the number of vertices, e is the number of edges
and f is the number of faces (regions bounded by edges,
including the outer, infinitely large region), then

 v − e + f = 2

Planar Graph (7A) 17 Young Won Lim
5/25/18

Euler’s Formula Examples

https://en.wikipedia.org/wiki/Planar_graph

K
4

Planar Q
3

Planar

 v − e + f = 2

v = 4
e = 6
f = 4

v = 8
e = 12
f = 6

Planar Graph (7A) 18 Young Won Lim
5/25/18

Corollary 1

https://en.wikipedia.org/wiki/Planar_graph

In a finite, connected, simple, planar graph,

any face (except possibly the outer one)
is bounded by at least three edges and

every edge touches at most two faces;

using Euler's formula, one can then show
that these graphs are sparse in the sense that if v ≥ 3:

 e ≤ 3 v − 6

face

Planar Graph (7A) 19 Young Won Lim
5/25/18

Corollary 1 Examples

https://en.wikipedia.org/wiki/Planar_graph

K
4

Planar Q
3

Planar

e ≤ 3 v − 6
6 ≤ 3·4 − 6

v = 4
e = 6
f = 4

v = 8
e = 12
f = 6

e ≤ 3 v − 6
12 ≤ 3·8 − 6

Planar Graph (7A) 20 Young Won Lim
5/25/18

Euler’s Formula : Corollary 2

https://en.wikipedia.org/wiki/Planar_graph

In a finite, connected, simple, planar graph,

Every vertex has a degree not exceeding 5.

deg(v) ≤ 5

Planar Graph (7A) 21 Young Won Lim
5/25/18

Corollary 2 Examples

https://en.wikipedia.org/wiki/Planar_graph

K
4

Planar Q
3

Planar

deg(v) ≤ 5degree: 3 deg(v) ≤ 5degree: 3

Hamiltonian Cycles (3A) 22 Young Won Lim
5/25/18

Dual Graph

https://en.wikipedia.org/wiki/Dual_graph

the dual graph of a plane graph G is a graph that
has a vertex for each face of G.

The dual graph has an edge whenever two
faces of G are separated from each other by an
edge,

and a self-loop when the same face appears on
both sides of an edge.

each edge e of G has a corresponding dual
edge, whose endpoints are the dual vertices
corresponding to the faces on either side of e.

Hamiltonian Cycles (3A) 23 Young Won Lim
5/25/18

Dipoles and Cycles

https://en.wikipedia.org/wiki/Dual_graph

Hamiltonian Cycles (3A) 24 Young Won Lim
5/25/18

Self-loop in a dual graph

https://www.math.hmc.edu/~kindred/cuc-only/math104/lectures/lect17-slides-handout.pdf

a self-loop when the same face appears on
both sides of an edge.

Hamiltonian Cycles (3A) 25 Young Won Lim
5/25/18

Correspondence between G and G*

https://en.wikipedia.org/wiki/Hamiltonian_path

Vertices of G* Faces of G

Edges of G* Edges of G

Multigraph Dual of a plane graph

Loops of G* Cut edge of G

Multiple edges of G* distinct faces of G with multiple

common boundary edges

Hamiltonian Cycles (3A) 26 Young Won Lim
5/25/18

Cut

https://en.wikipedia.org/wiki/Cut_(graph_theory)

a cut is a partition of the vertices of a graph
into two disjoint subsets.

Any cut determines a cut-set
the set of edges that have one endpoint
in each subset of the partition.

These edges are said to cross the cut.

In a connected graph, each cut-set determines a unique cut,
and in some cases cuts are identified with their cut-sets rather than
with their vertex partitions.

Hamiltonian Cycles (3A) 27 Young Won Lim
5/25/18

Minimum Cut

https://en.wikipedia.org/wiki/Cut_(graph_theory)

A cut is minimum if the size or weight of the cut
is not larger than the size of any other cut.

the size of this cut is 2,
and there is no cut of size 1
because the graph is bridgeless.

Hamiltonian Cycles (3A) 28 Young Won Lim
5/25/18

Maximum Cut

https://en.wikipedia.org/wiki/Cut_(graph_theory)

A cut is maximum if the size of the cut
is not smaller than the size of any other cut.

the size of the cut is equal to 5,
and there is no cut of size 6,
or |E| (the number of edges),
because the graph is not bipartite
(there is an odd cycle).

Hamiltonian Cycles (3A) 29 Young Won Lim
5/25/18

Infinite Graphs and Tessellations

https://en.wikipedia.org/wiki/Dual_graph

The concept of duality applies as well
to infinite graphs embedded in the plane
as it does to finite graphs.

When all faces are bounded regions
surrounded by a cycle of the graph,
an infinite planar graph embedding
can also be viewed as a tessellation of the plane,
a covering of the plane by closed disks
(the tiles of the tessellation) whose interiors
(the faces of the embedding) are disjoint open disks.

Hamiltonian Cycles (3A) 30 Young Won Lim
5/25/18

Dual Logic Graph

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

A

B

C

C

A B

C (A + B)x

x

x

y

z

y

GND

z

VddC

BA

A B

C

Hamiltonian Cycles (3A) 31 Young Won Lim
5/25/18

Stick Layout

A B C A B C

Vcc

GND

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Hamiltonian Cycles (3A) 32 Young Won Lim
5/25/18

CMOS Transistors and Stick Layout

https://en.wikipedia.org/wiki/CMOS

G G

S D S D

Hamiltonian Cycles (3A) 33 Young Won Lim
5/25/18

Single-Strip Stick Graph and Logic Graph

A

B

C

C

A B

C (A + B)X

y

z

A B C

Vcc

GND

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Hamiltonian Cycles (3A) 34 Young Won Lim
5/25/18

Stick Graph and Logic Diagram

A B C

Vcc

uninterrupted diffusion strip

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

X

X

y

GND

z

Vdd

consistent Euler paths (PUN & PDN)

C

BA

path

cycle

Hamiltonian Cycles (3A) 35 Young Won Lim
5/25/18

Stick Graph and Logic Diagram

Eulerian Trail

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

X

z

Vdd

Eulerian Circuit

BA

x

y

GND

z

C

BA

C
1

3

2

2 2

2

Young Won Lim
5/25/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/23/18

Graph Coloring (9A)

Young Won Lim
5/23/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Graph Coloring (9A) 3 Young Won Lim
5/23/18

Graph Coloring

https://en.wikipedia.org/wiki/Graph_coloring

graph coloring is a special case of graph labeling;

it is an assignment of labels (colors)
to elements of a graph subject to certain constraints.

a vertex coloring
is a way of coloring the vertices of a graph
such that no two adjacent vertices share the same color

an edge coloring
assigns a color to each edge so that no two adjacent
edges share the same color

a face coloring of a planar graph
assigns a color to each face or region so that no two
faces that share a boundary have the same color.

Graph Coloring (9A) 4 Young Won Lim
5/23/18

Graph Coloring Relations

https://en.wikipedia.org/wiki/Graph_coloring

an edge coloring of a graph
is just a vertex coloring of its line graph,

a face coloring of a plane graph
is just a vertex coloring of its dual graph.

However, non-vertex coloring problems
are often stated and studied as is.

a graph coloring means almost always a vertex
coloring.

Since a vertex with a loop could never be properly
colored, a loopless graph is generally assumed.

Graph Coloring (9A) 5 Young Won Lim
5/23/18

k-coloring and chromatic number

https://en.wikipedia.org/wiki/Graph_coloring

k-coloring
a coloring using at most k colors

chromatic number, χ(G)
the smallest number of colors
needed to color a graph G

A graph that can be assigned a (proper) k-coloring is
k-colorable

A graph whose chromatic number is exactly k is
k-chromatic

Graph Coloring (9A) 6 Young Won Lim
5/23/18

Color Class

https://en.wikipedia.org/wiki/Graph_coloring

A subset of vertices assigned to the same color is
called a color class,

every such class forms an independent set.

a k-coloring is the same
as a partition of the vertex set
into k independent sets,

the terms k-partite and k-colorable
have the same meaning.

Graph Coloring (9A) 7 Young Won Lim
5/23/18

Bipartite Graph

https://en.wikipedia.org/wiki/Bipartite_graph

a bipartite graph (or bigraph) is a graph
whose vertices can be divided
into two disjoint and independent sets U and V
such that every edge connects
a vertex in U to one in V.

Vertex sets U and V are usually called
the parts of the graph.

Equivalently, a bipartite graph is
a graph that does not contain any odd-length cycles.

Graph Coloring (9A) 8 Young Won Lim
5/23/18

Bipartite Graph : 2-colorable

https://en.wikipedia.org/wiki/Bipartite_graph

The two sets U and V may be thought of as
a coloring of the graph with two colors:

if one colors all nodes in U blue,
and all nodes in V green,
each edge has endpoints of differing colors,
as is required in the graph coloring problem.

In contrast, such a coloring is impossible
in the case of a non-bipartite graph,
such as a triangle: 3 colors

Graph Coloring (9A) 9 Young Won Lim
5/23/18

Bipartite Graph : degree sequence

https://en.wikipedia.org/wiki/Bipartite_graph

The degree sum formula
for a bipartite graph states that

The degree sequence of a bipartite graph is
the pair of lists each containing the degrees of
the two parts U and V.

For example, the complete bipartite graph K
3,5

 has

degree sequence (5,5,5), (3,3,3,3,3)

K
5,3

 has degree sequence (3,3,3,3,3), (5,5,5)

Young Won Lim
5/23/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/26/18

Tree Traversal (1A)

Young Won Lim
5/26/18

 Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Tree Traversal (1A) 3 Young Won Lim
5/26/18

Tree Traversal

https://en.wikipedia.org/wiki/Morphism

Depth First Search Breadth First Search

F

B

Da

C E

G

H

IA

Depth First Search
Pre-Order
In-order
Post-Order

Tree Traversal (1A) 4 Young Won Lim
5/26/18

Recursive Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

inorder(node)
 if (node = null)
 return
 inorder(node.left)
 visit(node)
 inorder(node.right)

preorder(node)
 if (node = null)
 return

visit(node)
 preorder(node.left)
 preorder(node.right)

postorder(node)
 if (node = null)
 return
 postorder(node.left)

postorder(node.right)
 visit(node)

1

2 3

2

1 3

3

1 2

Tree Traversal (1A) 5 Young Won Lim
5/26/18

Iterative Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

iterativeInorder(node)
 s ← empty stack

 while (not s.isEmpty() or
 node ≠ null)

 if (node ≠ null)
 s.push(node)
 node ← node.left
 else
 node ← s.pop()
 visit(node)

node ← node.right

iterativePreorder(node)
 if (node = null)

return
 s ← empty stack
 s.push(node)

while (not s.isEmpty())
 node ← s.pop()
 visit(node)
 // right child is pushed first
 // so that left is processed first
 if (node.right ≠ null)
 s.push(node.right)
 if (node.left ≠ null)
 s.push(node.left)

iterativePostorder(node)
 s ← empty stack
 lastNodeVisited ← null

 while (not s.isEmpty() or node ≠ null)
 if (node ≠ null)
 s.push(node)
 node ← node.left
 else
 peekNode ← s.peek()
 // if right child exists and traversing

// node from left child, then move right
 if (peekNode.right ≠ null and

lastNodeVisited ≠ peekNode.right)
 node ← peekNode.right
 else
 visit(peekNode)
 lastNodeVisited ← s.pop()

Tree Traversal (1A) 6 Young Won Lim
5/26/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + *

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D –

Tree Traversal (1A) 7 Young Won Lim
5/26/18

Infix, Prefix, Postfix Notations and Binary Trees

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + *

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D –

+

A B

+

A B

*

C +

B C

*

A /

C D

+

/

A B

D

A B

–

*

+ C

Tree Traversal (1A) 8 Young Won Lim
5/26/18

In-Order, Pre-Order, Post-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

pre-order post-order

in-order

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea

Tree Traversal (1A) 9 Young Won Lim
5/26/18

Pre-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea

Tree Traversal (1A) 10 Young Won Lim
5/26/18

In-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea

Tree Traversal (1A) 11 Young Won Lim
5/26/18

Post-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea

Tree Traversal (1A) 12 Young Won Lim
5/26/18

Tree Traversal

https://en.wikipedia.org/wiki/Morphism

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

pre-order post-order

in-order

Tree Traversal (1A) 13 Young Won Lim
5/26/18

Pre-Order

https://en.wikipedia.org/wiki/Morphism

pre-order function
 Check if the current node is empty / null.
 Display the data part of the root (or current node).
 Traverse the left subtree by recursively calling the pre-order function.
 Traverse the right subtree by recursively calling the pre-order function.

FBADCEGIH

pre-order post-order

in-order

Tree Traversal (1A) 14 Young Won Lim
5/26/18

In-Order

https://en.wikipedia.org/wiki/Morphism

in-order function
 Check if the current node is empty / null.
 Traverse the left subtree by recursively calling the in-order function.
 Display the data part of the root (or current node).
 Traverse the right subtree by recursively calling the in-order function.

ABCDEFGHI

pre-order post-order

in-order

Tree Traversal (1A) 15 Young Won Lim
5/26/18

Post-Order

https://en.wikipedia.org/wiki/Morphism

post-order function
 Check if the current node is empty / null.
 Traverse the left subtree by recursively calling the post-order function.
 Traverse the right subtree by recursively calling the post-order function.
 Display the data part of the root (or current node).

ACEDBHIGH

pre-order post-order

in-order

Tree Traversal (1A) 16 Young Won Lim
5/26/18

Recursive Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

inorder(node)
 if (node = null)
 return
 inorder(node.left)
 visit(node)
 inorder(node.right)

preorder(node)
 if (node = null)
 return

visit(node)
 preorder(node.left)
 preorder(node.right)

postorder(node)
 if (node = null)
 return
 postorder(node.left)

postorder(node.right)
 visit(node)

Tree Traversal (1A) 17 Young Won Lim
5/26/18

Pre-Order recursive algorithm

https://en.wikipedia.org/wiki/Tree_traversal

preorder(node)
 if (node = null)
 return

visit(node)
 preorder(node.left)
 preorder(node.right)

F

B

Da

C E

G

H

IA

F

B

Da

C E

G

H

IA

B

Da

C E

A

aA D

C E

C E G

H

I H

I H

F B A D C E G I H

Tree Traversal (1A) 18 Young Won Lim
5/26/18

Iterative Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

iterativeInorder(node)
 s ← empty stack

 while (not s.isEmpty() or
 node ≠ null)

 if (node ≠ null)
 s.push(node)
 node ← node.left
 else
 node ← s.pop()
 visit(node)

node ← node.right

iterativePreorder(node)
 if (node = null)

return
 s ← empty stack
 s.push(node)

while (not s.isEmpty())
 node ← s.pop()
 visit(node)
 // right child is pushed first
 // so that left is processed first
 if (node.right ≠ null)
 s.push(node.right)
 if (node.left ≠ null)
 s.push(node.left)

iterativePostorder(node)
 s ← empty stack
 lastNodeVisited ← null

 while (not s.isEmpty() or node ≠ null)
 if (node ≠ null)
 s.push(node)
 node ← node.left
 else
 peekNode ← s.peek()
 // if right child exists and traversing

// node from left child, then move right
 if (peekNode.right ≠ null and

lastNodeVisited ≠ peekNode.right)
 node ← peekNode.right
 else
 visit(peekNode)
 lastNodeVisited ← s.pop()

Tree Traversal (1A) 19 Young Won Lim
5/26/18

Tree Traversal

https://en.wikipedia.org/wiki/Morphism

pre-order post-order

in-order

Tree Traversal (1A) 20 Young Won Lim
5/26/18

Stack

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Tree Traversal (1A) 21 Young Won Lim
5/26/18

Queue

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)#/media/File:Data_Queue.sv
g

Tree Traversal (1A) 22 Young Won Lim
5/26/18

Search Algorithms

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

DFS (Depth First Search) BFS (Breadth First Search)

Tree Traversal (1A) 23 Young Won Lim
5/26/18

DFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

DFS (Depth First Search)A recursive implementation of DFS:

 procedure DFS(G,v):
 label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
 if vertex w is not labeled as discovered then
 recursively call DFS(G,w)

A non-recuUrsive implementation of DFS:

 procedure DFS-iterative(G,v):
 let S be a stack
 S.push(v)
 while S is not empty
 v = S.pop()
 if v is not labeled as discovered:
 label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
 S.push(w)

Tree Traversal (1A) 24 Young Won Lim
5/26/18

Search Algorithms

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

DFS (Depth First Search) BFS (Breadth First Search)

Tree Traversal (1A) 25 Young Won Lim
5/26/18

BFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

BFS (Breadth First Search)

Breadth-First-Search(Graph, root):

 create empty set S
 create empty queue Q

 add root to S
Q.enqueue(root)

 while Q is not empty:
 current = Q.dequeue()
 if current is the goal:
 return current
 for each node n that is adjacent to current:

if n is not in S:
 add n to S
 n.parent = current
 Q.enqueue(n)

Tree Traversal (1A) 26 Young Won Lim
5/26/18

In-Order

Rosen

n o p

j k

e f

b c d

a

g h i

l m

pre-order post-order

in-order

pre-order post-order

in-order

Tree Traversal (1A) 27 Young Won Lim
5/26/18

Ternary Tree

Rosen

n o p

j k

e f

b c d

a

g h i

l m

a-b-e-j-k-n-o-p-f-c-d-g-l-m-h-i

Tree Traversal (1A) 28 Young Won Lim
5/26/18

In-Order

Rosen

n o p

j k

e f

b c d

a

g h i

l m

j-e-n-k-o-p-b-f-a-c-l-g-m-d-h-i

Tree Traversal (1A) 29 Young Won Lim
5/26/18

Post-Order

Rosen

n o p

j k

e f

b c d

a

g h i

l m

j-n-o-p-k-e-f-b-c-l-m-g-h-i-d-a

Tree Traversal (1A) 30 Young Won Lim
5/26/18

Ternary

Ternary

Etymology
Late Latin ternarius (“consisting of three things”), from terni (“three each”).
Adjective

ternary (not comparable)
 Made up of three things; treble, triadic, triple, triplex
 Arranged in groups of three
 (mathematics) To the base three [quotations ▼]
 (mathematics) Having three variables

https://en.wiktionary.org/wiki/ternary

The sequence continues with quaternary, quinary, senary, septenary, octonary,
nonary, and denary, although most of these terms are rarely used. There's no word
relating to the number eleven but there is one that relates to the number twelve:
duodenary.

https://en.oxforddictionaries.com/explore/what-comes-after-primary-secondary-tertiary

Young Won Lim
5/26/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/22/18

Formal Language (1A)

Young Won Lim
5/22/18

 Copyright (c) 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Formal Language (11A) 29 Young Won Lim
5/22/18

Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

Formal Language (11A) 30 Young Won Lim
5/22/18

Finite State Machine

https://en.wikipedia.org/wiki/Automata_theory

The figure at right illustrates a finite-state
machine, which belongs to a well-known type
of automaton.

This automaton consists of
states (represented in the figure by circles)
and transitions (represented by arrows).

As the automaton sees a symbol of input,
it makes a transition (or jump)
to another state, according to its transition
function, which takes the current state and
the recent symbol as its inputs.

Formal Language (11A) 32 Young Won Lim
5/22/18

Turing Machine

https://en.wikipedia.org/wiki/Turing_machine

Formal Language (11A) 33 Young Won Lim
5/22/18

Pushdown Automaton

https://en.wikipedia.org/wiki/Pushdown_automaton

a pushdown automaton (PDA) is
a type of automaton that employs a stack

Formal Language (11A) 34 Young Won Lim
5/22/18

Finite State Machine

https://en.wikipedia.org/wiki/Finite-state_machine

Young Won Lim
5/22/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/25/18

Finite State Machine (3A)

Young Won Lim
5/25/18

 Copyright (c) 2013 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

FSM (3A) 3 Young Won Lim
5/25/18

Formal Language

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

a

Latches and Flip-flops (1A) 4 Young Won Lim
5/25/18

NOR-based SR Latch

R

S

Q

SET
begins

RST
begins

SET
begins

RST
begins

S=1
R=0

S=0
R=1

S=1
R=0

S=0
R=1

S=0
R=0

S=0
R=0

S=0
R=0

S=0
R=0

Hold
begins

Hold
begins

Hold
begins

Hold
begins

S=1

R=0

SET Q=1

Q=0

S=0

R=1

RESET Q=0

Q=1

S=0

R=0

HOLD Q=old Q

Q=old Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 5 Young Won Lim
5/25/18

NOR-based SR Latch States

S=1

R=0

SET

Q=1

Q=0

S=0

R=1

RESETQ=0

Q=1

S=0

R=0

HOLD Q=old Q

Q=old Q

S=1

R=0

S=0

R=1

S=0

R=0

S=0

R=1

S=0

R=0

S=1

R=0

Q=1

Q=0

Q=0

Q=1

S

R Q

Q

SETRESETHOLD NOR based SR Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 8 Young Won Lim
5/25/18

SR Latch Symbols

S

R Q

Q

SETRESETHOLD NAND based SR Latch

S

R Q

Q

SETRESETHOLD NOR based SR Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 10 Young Won Lim
5/25/18

NOR-based D Latch

C

D

Q

transparent opaque transparent opaque

SET
begins

RST
begins

SET
begins

RST
begins

Hold
begins

Hold
begins

C

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 11 Young Won Lim
5/25/18

NOR-based D Latch

Q=1

Q=0

Q=0

Q=1

C=1

D=1

C=1

D=0

C=0

D=X

C=1

D=0

C=0

D=X

C=1

D=1

C

D

C Q

Q

SETRESETHOLD NOR based D Latch

Q

Q

SETRESETHOLD

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 12 Young Won Lim
5/25/18

Master-Slave D FlipFlop

D

Y

Y

Q

D

Q

Master D Latch

Slave D Latch

Master-Slave D F/F

Y

the hold output
of the master is
transparently
reaches the
output of the
slave

this value is
held for another
half period

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 13 Young Won Lim
5/25/18

Master-Slave D FlipFlop – Falling Edge

Master D Latch

Slave D Latch

D

C Q

Q D

C Q

Q

D

Q

Q

D

CK

Q

Q

D

CK

Q

D

CK

Q

Y

Y

CK

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 14 Young Won Lim
5/25/18

Master-Slave D FlipFlop – Rising Edge

Master D Latch

Slave D Latch

D

C Q

Q D

C Q

Q

D

Q

Q

D

CK

Q

Q

D

CK

Q

D

CK

Q

Y

Y

CK

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 15 Young Won Lim
5/25/18

D Latch & D FlipFlop

Level Sensitive D Latch

Edge Sensitive D FlipFlop

D

Q

Q

CK

D

CK

Q

D

Q

Q

C

D

Q

CK=1 transparent
CK=0 opaque

CK=1→0 transparent
else opaque

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 16 Young Won Lim
5/25/18

D FlipFlop with Enable

D

Q

Q

EN

D

Q

Q

0

1D

EN

Q

Q

CK

D

EN

Q

CK

D

EN

Q

CK

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 19 Young Won Lim
5/25/18

FF Timing (Ideal)

D Q

D Q

D Q

D Q

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

D
3:0

Q
3:0

Inputs to FFs

Outputs of FFs

Q
3

Q
2

Q
1

Q
0

D
3

D
2

D
1

D
0

CLK

Register

In
p
u

ts
to

 F
F

s

O
u

tp
u

ts
 o

f
F

F
s

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 20 Young Won Lim
5/25/18

Sequence of States

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

(t+1)th
edge

(t+2)th
edge

(t+3)th
edge

(t+4)th
edge

(t+5)th

edge
(t)th
edge

Inputs to FFs

Outputs of FFs

? ? ? ? ? ?

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

Find inputs to FFs

which will make outputs
in this sequence

(t+1)th
edge

(t+2)th
edge

(t+3)th
edge

(t+4)th
edge

(t+5)th

edge
(t)th
edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 21 Young Won Lim
5/25/18

When NextSt becomes CurrSt

NextSt

CurrSt

Compute NextSt from
CurrSt, Ta, Tb

This NextSt becomes
a new CurrSt

Compute NextSt

CurrSt <= NextSt

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 22 Young Won Lim
5/25/18

Finding FF Inputs

? ? ? ? ? ?

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D Q

D Q

D Q

D Q

D
3:0

Q
3:0

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

Inputs

Inputs to FFs

Outputs of FFs

During the tth clock edge period,

Compute the next state Q(t+1)
using the current state Q(t) and
other external inputs

Place it to FF inputs

After the next clock edge, (t+1)th,
the computed next state Q(t+1)
becomes the current state

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 23 Young Won Lim
5/25/18

Method of Finding FF Inputs

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5) Q(t+6)

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D Q

D Q

D Q

D Q

D
3:0

Q
3:0

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

Inputs

Q
3

Q
2

Q
1

Q
0

I D
3

Q
3

Q
2

Q
1

Q
0

I D
3

Q
3

Q
2

Q
1

Q
0

I D
3

Q
3

Q
2

Q
1

Q
0

I D
3

Find the boolean functions
D3, D2, D1, D0
in terms of Q3, Q2, Q1, Q0,
and external inputs
for all possible cases.

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 24 Young Won Lim
5/25/18

State Transition

Q(t+1)

Q(t+1)Q(t)

D
3:0

Q
3:0

Q
(t

)

Q
(t

+
1
)

Inputs

Q(t+1)

Q(t+1)Q(t)

Inputs

Compute the next state
using the current state
and external inputs
in the current clock cycle

After the next clock edge,
the computed next state (FF Inputs)
becomes the current state (FF Outputs)https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 25 Young Won Lim
5/25/18

Moore FSM

1

clock

INPUT State
Register

Next State
Combinational

Logic

Output
Combinational

Logic

OUTPUT

D Q D Q D Q

D Q D Q D Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 26 Young Won Lim
5/25/18

Mealy Machine

1

clock

INPUT State
Register

Next State
Combinational

Logic

Output
Combinational

Logic

OUTPUT

D Q D Q D Q

D Q D Q D Q

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A) 27 Young Won Lim
5/25/18

Latches and FF's

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Latches and Flip-flops (1A) 28 Young Won Lim
5/25/18

FSM Inputs and Outputs

L
A

L
A

L
B

L
B

T
B

T
B

T
A

T
A

Traffic Lights - Outputs

L
A

L
B

Sensor - Inputs

T
B

T
A

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Latches and Flip-flops (1A) 29 Young Won Lim
5/25/18

States

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

L
A

L
A

L
B

L
B

T
B

T
A

=0

=0

T
A

=1

T
B =1

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Latches and Flip-flops (1A) 30 Young Won Lim
5/25/18

Moore FSM State Transition Table

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

1

1

0

0

0

1

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

S'
1

1

0

0

0

1

1

S
1

S
1
S

0

S
1
S

0
T

B

S
1
S

0
T

B

S '
1

= S
1
S

0
+ S

1
S

0

= S
1
+ S

0

0 X 0

1 X X

0 1 X

0 0 X

1 X X

0 X 1

S
0

T
A

T
B

1

0

0

0

1

1

S
1

1

0

0

1

0

0

S'
0

S
1
S

0
T

A

S
1
S

0
T

B

S '
0

= S
1
S

0
T

A
+ S

1
S

0
T

B

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Latches and Flip-flops (1A) 31 Young Won Lim
5/25/18

States

00
01
10

0

0

1

1

1 1 0

0 1 0

1 0 1

0 0 0

S
2
L

A1
L

A0
L

B1

1

1

0

0

S
1

1

0

0

0

L
B0

1 1

0 1

1 0

0 0

S
2
L

A1

1

1

0

0

S
1

L
A1
=S

1

1 0

0 0

1 1

0 0

S
2

L
A0

1

1

0

0

S
1

L
A0
=S

1
S

0

0

0

1

1

1

0

1

0

S
2

L
B1

1

1

0

0

S
1

1

0

1

0

S
2

1

1

0

0

S
1

1

0

0

0

L
B0

L
B1
=S

1
L

A0
=S

1
S

0

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Latches and Flip-flops (1A) 32 Young Won Lim
5/25/18

Moore FSM (1)

D Q

D Q

S'
1

S'
0

S
1

S
0

T
A

T
B

L
A1

L
A0

L
B1

L
B0

S
1

S
0

clk

Current
State

Next
State

inputs

outputs

states
00: S0
01: S1
10: S2
11: S3

outputs (LA/LB)
00: Green
01: Yellow
10: Red
11: X

NextSt

CurrSt

Compute NextSt from
CurrSt, Ta, Tb

This NextSt becomes
a new CurrSt

Compute NextSt

CurrSt <= NextSt

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Latches and Flip-flops (1A) 33 Young Won Lim
5/25/18

Moore FSM

D Q

D Q

S'
1

S'
0

S
1

S
0

T
A

T
B

S'
1

= S
1
+ S

0

S '
0

= S
1
S

0
T

A
+ S

1
S

0
T

B

L
A1

L
A0

L
B1

L
B0

L
A1
=S

1

L
A0
=S

1
S

0

L
B1
=S

1

L
B0
=S

1
S

0

Next States

Outputs

S'
0
= S

1
S

0
T

A

+ S
1
S

0
T

B

S '
1
= S

1
+ S

0

Inputs T
A

T
B

Current State S
1

S
0

S
1

S
0

Current State S
1

S
0

L
A1
=S

1

L
A0
=S

1
S

0

L
B1
=S

1

L
B0
=S

1
S

0

clk

Current
State

Next
State

inputs

outputs

states
00: S0
01: S1
10: S2
11: S3

outputs (LA/LB)
00: Green
01: Yellow
10: Red
11: X https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Latches and Flip-flops (1A) 39 Young Won Lim
5/25/18

Divide By N Counter FSM

S0 S1

S2

Y=1 Y=0

Y=0

reset
Input: none

S1
Output: Y=1 every 3 cycles

 S2

 S1

 S0

Curr St

S0

S2

S1

Next St

 S2

 S1

 S0

Curr St

0

0

1

Output

State Transition Table Output Table

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Latches and Flip-flops (1A) 40 Young Won Lim
5/25/18

Encoding States

 S2

 S1

 S0

Curr St

S0

S2

S1

Next St

 S2

 S1

 S0

Curr St

0

0

1

Output

State Transition Table Output Table

0

1

0

1 0

0 1

 0 0

0

0

 1

1 0

0 1

0 0

0

0

1

S
0

S'
1

S
1

S'
0

S
0 YS

1

S '
1
=S

1
S

0

S '
0
=S

1
S

0

Y=S
1
S

0

 S2

 S1

 S0

Curr St

S0

S2

S1

Next St

 S2

 S1

 S0

Curr St

0

0

1

Output

State Transition Table Output Table

0

1

0

1 0 0

0 1 0

 0 0 1

0

0

1

1

0

0

1 0 0

0 1 0

0 0 1

0

0

1

S
0

S'
2

S
2

S'
0

S
0 YS

2

S '
2
=S

2
S

1
S

0
Y=S

2
S

1
S

0

S
1

S
1

S'
1

S '
1
=S

2
S

1
S

0

S '
0
=S

2
S

1
S

0

⇒ S
1

⇒ S
0

⇒ S
2

⇒ S
0

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Young Won Lim
5/25/18

References

[1] http://en.wikipedia.org/
[2]

