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Path and Trail 

https://en.wikipedia.org/wiki/Eulerian_path

A path is a trail in which all vertices  are distinct. 
(except possibly the first and last) 

A trail is a walk in which all edges are distinct. 

Vertices Edges

    Walk     may   may   (Closed/Open)

repeat repeat

    Trail     may  cannot  (Open)

          repeat repeat 

    Path     cannot  cannot   (Open)

          repeat repeat 

    Circuit may  cannot   (Closed)

     repeat repeat 

Cycle cannot cannot (Closed)

         repeat repeat 
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Simple Paths and Cycles

https://en.wikipedia.org/wiki/Eulerian_path

Most literatures require that all of the edges and vertices of a 
path be distinct from one another. 

But, some do not require this and instead use the term simple 
path to refer to a path which contains no repeated vertices.

A simple cycle may be defined as a closed walk with no 
repetitions of vertices and edges allowed, other than the 
repetition of the starting and ending vertex

There is considerable variation of terminology!!!
Make sure which set of definitions are used...
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Simple Paths and Cycles

path cycle

simple
path

simple
cycle

trail circuit

path cycle

Most literatures some other literatures

narrow sense path & cycle wide sense path & cycle



Eulerian Cycles (2A) 6 Young Won Lim
5/25/18

Paths and Cycles

v0, e1, v1, e2, ⋯ , ek , vk

v0

e
1

v1

e
2

v2

e
3

v3

ek

vk

⋯

v0, e1, v1, e2, ⋯ , ek , vk (v0 = vk)

path

cycle

v0, e1, v1, e2, ⋯ , ek , vk

v0, e1, v1, e2, ⋯ , ek , vk (v0 = vk)

path

cycle

(v0 ≠ vk)

path

cycle

cyclepath

One of a kind

Two different kinds
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Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

Some people reserve the terms path and cycle 
to mean non-self-intersecting path and cycle. 

A (potentially) self-intersecting path is known 
as a trail or an open walk; 

and a (potentially) self-intersecting cycle, 
a circuit or a closed walk. 

This ambiguity can be avoided by using the terms 
Eulerian trail and Eulerian circuit 
when self-intersection is allowed

no repeating vertices

repeating vertices

repeating vertices

repeating vertices
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Degree of a vertex

https://en.wikipedia.org/wiki/Degree_(graph_theory)

 the degree (or valency) of a vertex is 
the number of edges incident to the vertex, 
with loops counted twice. 

The degree of a vertex v is denoted deg(v)
the maximum degree of a graph G, denoted by Δ(G)
the minimum degree of a graph, denoted by δ(G)

Δ(G) = 5 
δ(G) = 0

In a regular graph, all degrees are the same
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Regular Graphs

https://en.wikipedia.org/wiki/Regular_graph

a regular graph is a graph where each vertex has the 
same number of neighbors; i.e. every vertex has the 
same degree or valency. 
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Handshake Lemma

https://en.wikipedia.org/wiki/Degree_(graph_theory)

The degree sum formula states that, 
given a graph G = ( V , E ) 

This statement (as well as the degree sum formula) is 
known as the handshaking lemma. 
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deg(a) = 1

deg(b) = 3

deg(c) = 3

deg (d ) = 2

deg (e) = 5

deg ( f ) = 2

deg (g) = 0

16

|E| = 8

2|E| = 16
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Adding odd vertex

https://en.wikipedia.org/wiki/Eulerian_path
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The number of odd vertices

Even vertices :    Odd vertices : 

in any graph, the number of 
vertices with odd degree is even. 

{x
1,
x

2,
⋯ , xm} {y

1,
y

2,
⋯ , yn}

S = deg(x
1
) + deg(x

2
) + ⋯ + deg(xm) T = deg( y

1
) + deg( y

2
) + ⋯ + deg( yn)

deg(xi) : even deg( yi) : odd

S : even

S+T : even

T : even = ∑ n odd numbers

S = even + even + ⋯ + even T = odd + odd + ⋯ + odd

n : even
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Graph Traversal

https://en.wikipedia.org/wiki/Graph_traversal

graph traversal (graph search) refers to 
the process of visiting (checking and/or updating) 
each vertex in a graph. 

Such traversals are classified
by the order in which the vertices are visited. 

Tree traversal is a special case of graph traversal.



Graph Search (6A) 4 Young Won Lim
5/24/18

DFS 

https://en.wikipedia.org/wiki/Graph_traversal

A depth-first search (DFS) 
is an algorithm for traversing a finite graph. 

DFS visits the child vertices 
before visiting the sibling vertices; 

that is, it traverses the depth of any particular path 
before exploring its breadth. 

A stack (often the program's call stack via recursion) is 
generally used when implementing the algorithm.
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DFS Backtrack

https://en.wikipedia.org/wiki/Graph_traversal

The algorithm begins with a chosen "root" vertex; 

it then iteratively transitions from the current vertex to an 
adjacent, unvisited vertex, until it can no longer find an 
unexplored vertex to transition to from its current location.

The algorithm then backtracks along previously visited 
vertices, until it finds a vertex connected to yet more 
uncharted territory.

It will then proceed down the new path as it had before, 
backtracking as it encounters dead-ends, and ending only 
when the algorithm has backtracked past the original "root" 
vertex from the very first step.
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BFS

https://en.wikipedia.org/wiki/Graph_traversal

A breadth-first search (BFS) is 
another technique for traversing a finite graph. 

BFS visits the neighbor vertices 
before visiting the child vertices

a queue is used in the search process

This algorithm is often used to find 
the shortest path from one vertex to another.
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Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal
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Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s
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General Graph Search Algorithm – 1 

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Search(Start, isGoal, Criteria)

insert(Start, Open);

repeat

if (empty(Open)) then return fail;

select node from Open using Criteria;

mark node as visited;

if (isGoal(node)) then return node;

for each child of node do

if (child not already visited) 
then insert(child, Open);
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DFS  

OPEN

x

1 2 3

3 1

2

2x

CLOSED

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

pop

push

unvisited children : 1, 3

“visited”
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BFS 

y

ba

ba

OPEN

c

cy

CLOSED

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

c

deQ

enQ

unvisited children : 1, 3

marked “ visited”
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Possible duplication 

DFS BFS Stack Queue

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

possible duplication

- not yet expanded

possible duplication

- not yet expanded
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Must check before expansion

DFS BFS Stack Queue

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

must check if the selected 
node is already “visited”

must check if the selected 
node is already “visited”

possible duplication possible duplication

must not 
expanded 
twice

must not 
expanded 
twice
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General Graph Search Algorithm – 1 

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Search(Start, isGoal, Criteria)

insert(Start, Open);

repeat

if (empty(Open)) then return fail;

select node from Open using Criteria;

mark node as visited;

if (isGoal(node)) then return node;

for each child of node do

if (child not already visited) 
then insert(child, Open);

Remedy 1: 

check if visited when selecting

Remedy 2: 

check redundant nodes
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DFS-1 (Depth First Search)

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Open list – use a stack

Select with Criteria – pop

DFS(Start, isGoal)

push(Start, Open); // push

repeat

if (empty(Open)) then return fail;

node := pop(Open); // pop

mark node as visited;

if (isGoal(node)) then return node;

for each child of node do

if (child not already visited) then 

push(child, Open); // push 
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DFS-1 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal
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DFS-1 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal
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BFS-1 (Breadth First Search)

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Open list – use a FIFO

Select with Criteria – dequeue 

BFS(Start, isGoal)

enqueue(Start, Open); // enqueue 

repeat

if (empty(Open)) then return fail;

node := dequeue(Open); // dequeue

mark node as visited; 

if (isGoal(node)) then return node;

for each child of node do

if (child not already visited) then 

enqueue(child, Open); // enqueue 
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BFS-1 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal
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BFS-1 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal
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General Graph Search Algorithm – 2

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows: 
unmark all nodes in N;
mark node s;
pred(s) = 0;   {that is, it has no predecessor}
LIST = {s} 

while LIST ≠ ø do
select a node i in LIST;
if node j is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
add node j to the end of LIST;

else
delete node i from LIST 

DFS : select the last node i in LIST;

BFS : select the first node i in LIST; enQdeQ

push
pop
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Admissible arc 

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

pred(j) is a node that precedes j on some path from s; 

A node is either marked or unmarked.  

Initially only node s is marked.  

If a node is marked, it is reachable from node s.

An arc (i,j) A  is ∈ admissible
if node i is marked and j is not.

j

i

k

s

marked

unmarked

m
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LIST 

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Before a node is added into LIST,
the node is marked

LIST contains only the marked nodes

thus, the selected node i is marked already

The node j incident to the admissible arc(i,j)
must be unmarked

This node j is marked and added into LIST  

In this way, LIST contains 
only marked and non-repeating nodes

Check before inserting 

j

i

k

s

marked

unmarked

m
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DFS-2

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows: 
unmark all nodes in N;
mark node s;
pred(s) = 0;   {that is, it has no predecessor}
push s onto LIST

while LIST ≠ ø do
pop a node i from LIST;
if node j is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
push(node j) onto LIST;

else
delete node i from LIST 
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DFS-2 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal
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DFS-2 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal
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BFS-2

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows: 
unmark all nodes in N;
mark node s;
pred(s) = 0;   {that is, it has no predecessor}
enqueue s onto LIST

while LIST ≠ ø do
dequeue node i from LIST;
if node j is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
enqueue node j onto LIST;

else
delete node i from LIST 
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BFS-2 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal
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BFS-2 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal
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DFS Pseudocode 

https://en.wikipedia.org/wiki/Graph_traversal

1 procedure DFS(G, v):
2     label v as explored
3     for all edges e in G.incidentEdges(v) do
4         if edge e is unexplored then
5             w ← G.adjacentVertex(v, e)
6             if vertex w is unexplored then
7                 label e as a discovered edge
8                 recursively call DFS(G, w)
9 else
10               label e as a back edge
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BFS Pseudocode

https://en.wikipedia.org/wiki/Graph_traversal

1 procedure BFS(G, v):
2     create a queue Q
3     enqueue v onto Q
4     mark v
5     while Q is not empty:
6         t ← Q.dequeue()
7         if t is what we are looking for:
8             return t
9         for all edges e in G.adjacentEdges(t) do
12            o ← G.adjacentVertex(t, e)
13     if o is not marked:
14                mark o
15                enqueue o onto Q
16     return null
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Planar Graph

https://en.wikipedia.org/wiki/Planar_graph

a planar graph is a graph that can be embedded in the 
plane, i.e., it can be drawn on the plane in such a way 
that its edges intersect only at their endpoints. 

it can be drawn in such a way that no edges cross each 
other. Such a drawing is called a plane graph or planar
embedding of the graph. (planar representation)

A plane graph can be defined as a planar graph with a 
mapping from every node to a point on a plane, and from 
every edge to a plane curve on that plane, 
such that the extreme points of each curve are the points 
mapped from its end nodes, and all curves are disjoint 
except on their extreme points.
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Planar Graph Examples

https://en.wikipedia.org/wiki/Planar_graph
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Planar Representation

Discrete Mathematics, Rosen

K
4 Q

3

No crossing No crossing

K
4

Planar Q
3 Planar 
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Non-planar Graph K
3,3

Discrete Mathematics, Rosen
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1
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1

v
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v
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R
1v

3

R
21

R
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no where v
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Non-planar 
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Non-planar graph examples

Planar Non-planar 

contains K
3,3

contains K
3,3

contains a 
subdivision of K

3,3

non-planar 
subgraph

non-planar 
subgraph

non-planar 
subgraph

Non-planar Non-planar 
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All these graphs are similar
in determining whether 
they are planar or not

Homeomorphic
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Subdivision and Smoothing

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Smoothing
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Homeomorphism

https://en.wikipedia.org/wiki/Planar_graph

two graphs G
1
 and G

2
 are homeomorphic 

if there is a graph isomorphism 
from some subdivision of G

1
 

to some subdivision of G
2
 

homeo (identity, sameness)

iso (equal)
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Homeomorphism Examples

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Subdivision

isomorphichomeomorphic
Subdivision
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Embedding on a surface

https://en.wikipedia.org/wiki/Planar_graph

subdividing a graph preserves planarity. 

Kuratowski's theorem states that

    a finite graph is planar if and only if 
it contains no subgraph homeomorphic 
to K

5
 (complete graph on five vertices) or 

K
3,3

 (complete bipartite graph on six vertices, 

three of which connect to each of the other three).

In fact, a graph homeomorphic to K
5
 or K

3,3
 

is called a Kuratowski subgraph.
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Kuratowski’s Theorem 

https://en.wikipedia.org/wiki/Planar_graph

A finite graph is planar if and only if 
it does not contain a subgraph 
that is a subdivision of the complete graph K

5
 or 

the complete bipartite graph K
3,3 

(utility graph).

A subdivision of a graph results 
from inserting vertices into edges 
(changing an edge •——• to •—•—•) 
zero or more times.
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Kuratowski’s Theorem 

https://en.wikipedia.org/wiki/Planar_graph
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A subdivision of K
3,3
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Euler’s Formula

https://en.wikipedia.org/wiki/Planar_graph

Euler's formula states that if a finite, connected, planar 
graph is drawn in the plane without any edge intersections, 
and v is the number of vertices, e is the number of edges
and f is the number of faces (regions bounded by edges, 
including the outer, infinitely large region), then

    v − e + f = 2
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Euler’s Formula Examples

https://en.wikipedia.org/wiki/Planar_graph

K
4

Planar Q
3

Planar 

    v − e + f = 2

v = 4 
e = 6
f = 4

v = 8 
e = 12
f = 6
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Corollary 1

https://en.wikipedia.org/wiki/Planar_graph

In a finite, connected, simple, planar graph, 

any face (except possibly the outer one) 
is bounded by at least three edges and 

every edge touches at most two faces; 

using Euler's formula, one can then show 
that these graphs are sparse in the sense that if v ≥ 3:

    e ≤ 3 v − 6

face
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Corollary 1 Examples

https://en.wikipedia.org/wiki/Planar_graph

K
4

Planar Q
3

Planar 

e ≤ 3 v − 6
6 ≤ 3·4 − 6

v = 4 
e = 6
f = 4

v = 8 
e = 12
f = 6

e ≤ 3 v − 6
12 ≤ 3·8 − 6
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Euler’s Formula : Corollary 2

https://en.wikipedia.org/wiki/Planar_graph

In a finite, connected, simple, planar graph, 

Every vertex has a degree not exceeding 5. 

deg(v) ≤ 5 
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Corollary 2 Examples

https://en.wikipedia.org/wiki/Planar_graph

K
4

Planar Q
3

Planar 

deg(v) ≤ 5degree: 3 deg(v) ≤ 5degree: 3
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Dual Graph

https://en.wikipedia.org/wiki/Dual_graph

the dual graph of a plane graph G is a graph that 
has a vertex for each face of G. 

The dual graph has an edge whenever two 
faces of G are separated from each other by an 
edge, 

and a self-loop when the same face appears on 
both sides of an edge.

each edge e of G has a corresponding dual 
edge, whose endpoints are the dual vertices
corresponding to the faces on either side of e.
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Dipoles and Cycles

https://en.wikipedia.org/wiki/Dual_graph
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Self-loop in a dual graph

https://www.math.hmc.edu/~kindred/cuc-only/math104/lectures/lect17-slides-handout.pdf

a self-loop when the same face appears on 
both sides of an edge. 
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Correspondence between G and G*

https://en.wikipedia.org/wiki/Hamiltonian_path

Vertices of G* Faces of G

Edges of G* Edges of G

Multigraph Dual of a plane graph

Loops of G* Cut edge of G 

Multiple edges of G* distinct faces of G with multiple 

common boundary edges 
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Cut 

https://en.wikipedia.org/wiki/Cut_(graph_theory)

a cut is a partition of the vertices of a graph 
into two disjoint subsets. 

Any cut determines a cut-set
the set of edges that have one endpoint 
in each subset of the partition. 

These edges are said to cross the cut. 

In a connected graph, each cut-set determines a unique cut, 
and in some cases cuts are identified with their cut-sets rather than 
with their vertex partitions.
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Minimum Cut 

https://en.wikipedia.org/wiki/Cut_(graph_theory)

A cut is minimum if the size or weight of the cut 
is not larger than the size of any other cut. 

the size of this cut is 2, 
and there is no cut of size 1 
because the graph is bridgeless.
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Maximum Cut 

https://en.wikipedia.org/wiki/Cut_(graph_theory)

A cut is maximum if the size of the cut 
is not smaller than the size of any other cut. 

the size of the cut is equal to 5, 
and there is no cut of size 6, 
or |E| (the number of edges), 
because the graph is not bipartite 
(there is an odd cycle).
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Infinite Graphs and Tessellations

https://en.wikipedia.org/wiki/Dual_graph

The concept of duality applies as well 
to infinite graphs embedded in the plane 
as it does to finite graphs. 

When all faces are bounded regions 
surrounded by a cycle of the graph, 
an infinite planar graph embedding 
can also be viewed as a tessellation of the plane, 
a covering of the plane by closed disks 
(the tiles of the tessellation) whose interiors 
(the faces of the embedding) are disjoint open disks. 



Hamiltonian Cycles (3A) 30 Young Won Lim
5/25/18

Dual Logic Graph

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

A

B

C

C

A B

C (A + B)x

x

x

y

z

y

GND

z

VddC

BA

A B

C
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Stick Layout

A B C A B C

Vcc

GND

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf
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CMOS Transistors and Stick Layout  

https://en.wikipedia.org/wiki/CMOS

G G

S D S D
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Single-Strip Stick Graph and Logic Graph 

A

B

C

C

A B

C (A + B)X

y

z

A B C

Vcc

GND

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf
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Stick Graph and Logic Diagram 

A B C

Vcc

uninterrupted diffusion strip

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

X

X

y

GND

z

Vdd

consistent Euler paths (PUN & PDN) 

C

BA

path

cycle
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Stick Graph and Logic Diagram 

Eulerian Trail

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

X

z

Vdd

Eulerian Circuit

BA

x

y

GND

z

C

BA

C
1

3

2

2 2

2
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Graph Coloring

https://en.wikipedia.org/wiki/Graph_coloring

graph coloring is a special case of graph labeling; 

it is an assignment of labels (colors) 
to elements of a graph subject to certain constraints. 

a vertex coloring 
is a way of coloring the vertices of a graph 
such that no two adjacent vertices share the same color

an edge coloring 
assigns a color to each edge so that no two adjacent 
edges share the same color

a face coloring of a planar graph 
assigns a color to each face or region so that no two 
faces that share a boundary have the same color.
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Graph Coloring Relations

https://en.wikipedia.org/wiki/Graph_coloring

an edge coloring of a graph 
is just a vertex coloring of its line graph, 

a face coloring of a plane graph 
is just a vertex coloring of its dual graph. 

However, non-vertex coloring problems 
are often stated and studied as is. 

a graph coloring means almost always a vertex 
coloring.

Since a vertex with a loop  could never be properly 
colored, a loopless graph is generally assumed.
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k-coloring and chromatic number

https://en.wikipedia.org/wiki/Graph_coloring

k-coloring 
a coloring using at most k colors 

chromatic number, χ(G) 
the smallest number of colors 
needed to color a graph G

A graph that can be assigned a (proper) k-coloring is 
k-colorable

A graph whose chromatic number is exactly k is  
k-chromatic 
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Color Class

https://en.wikipedia.org/wiki/Graph_coloring

A subset of vertices assigned to the same color is 
called a color class, 

every such class forms an independent set. 

a k-coloring is the same 
as a partition of the vertex set 
into k independent sets, 

the terms k-partite and k-colorable 
have the same meaning.
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Bipartite Graph

https://en.wikipedia.org/wiki/Bipartite_graph

a bipartite graph (or bigraph) is a graph 
whose vertices can be divided 
into two disjoint and independent sets U and V 
such that every edge connects 
a vertex in U to one in V. 

Vertex sets U and V are usually called 
the parts of the graph. 

Equivalently, a bipartite graph is 
a graph that does not contain any odd-length cycles.
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Bipartite Graph : 2-colorable

https://en.wikipedia.org/wiki/Bipartite_graph

The two sets U and V may be thought of as 
a coloring of the graph with two colors: 

if one colors all nodes in U blue, 
and all nodes in V green, 
each edge has endpoints of differing colors, 
as is required in the graph coloring problem.

In contrast, such a coloring is impossible
in the case of a non-bipartite graph, 
such as a triangle: 3 colors
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Bipartite Graph : degree sequence

https://en.wikipedia.org/wiki/Bipartite_graph

The degree sum formula 
for a bipartite graph states that

The degree sequence of a bipartite graph is 
the pair of lists each containing the degrees of 
the two parts U and V. 

For example, the complete bipartite graph K
3,5

 has 

degree sequence (5,5,5), (3,3,3,3,3)

K
5,3

 has degree sequence (3,3,3,3,3), (5,5,5) 
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Tree Traversal 

https://en.wikipedia.org/wiki/Morphism

Depth First Search Breadth First Search

F

B

Da

C E

G

H

IA

Depth First Search
Pre-Order
In-order
Post-Order
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Recursive Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

inorder(node)
  if (node = null)
    return
  inorder(node.left)
  visit(node)
  inorder(node.right)

preorder(node)
  if (node = null)
    return

visit(node)
  preorder(node.left)
  preorder(node.right)

postorder(node)
  if (node = null)
    return
  postorder(node.left)

postorder(node.right)
  visit(node)

1

2 3

2

1 3

3

1 2
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Iterative Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

iterativeInorder(node)
  s ← empty stack

  while (not s.isEmpty() or 
    node ≠ null)

    if (node ≠ null)
      s.push(node)
      node ← node.left
    else
      node ← s.pop()
      visit(node)

node ← node.right

iterativePreorder(node)
  if (node = null)

return
  s ← empty stack
  s.push(node)

while (not s.isEmpty())
    node ← s.pop()
    visit(node)
    // right child is pushed first 
    // so that left is processed first
    if (node.right ≠ null)
      s.push(node.right)
    if (node.left ≠ null)
      s.push(node.left)

iterativePostorder(node)
  s ← empty stack
  lastNodeVisited ← null

  while (not s.isEmpty() or node ≠ null)
    if (node ≠ null)
      s.push(node)
      node ← node.left
    else
      peekNode ← s.peek()
      // if right child exists and traversing

// node from left child, then move right
      if (peekNode.right ≠ null and 

lastNodeVisited ≠ peekNode.right)
        node ← peekNode.right
      else
        visit(peekNode)
        lastNodeVisited ← s.pop()
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Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + * 

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D – 
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Infix, Prefix, Postfix Notations and Binary Trees

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + * 

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D – 

+

A B

+

A B

*

C +

B C

*

A /

C D

+

/

A B

D

A B

–

*

+ C
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In-Order, Pre-Order, Post-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

pre-order post-order

in-order

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea
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Pre-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea
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In-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea
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Post-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea
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Tree Traversal 

https://en.wikipedia.org/wiki/Morphism

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

pre-order post-order

in-order
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Pre-Order

https://en.wikipedia.org/wiki/Morphism

pre-order function 
    Check if the current node is empty / null.
    Display the data part of the root (or current node).
    Traverse the left subtree by recursively calling the pre-order function.
    Traverse the right subtree by recursively calling the pre-order function.

FBADCEGIH

pre-order post-order

in-order
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In-Order

https://en.wikipedia.org/wiki/Morphism

in-order function
    Check if the current node is empty / null.
    Traverse the left subtree by recursively calling the in-order function.
    Display the data part of the root (or current node).
    Traverse the right subtree by recursively calling the in-order function.

ABCDEFGHI

pre-order post-order

in-order



Tree Traversal (1A) 15 Young Won Lim
5/26/18

Post-Order

https://en.wikipedia.org/wiki/Morphism

post-order function
    Check if the current node is empty / null.
    Traverse the left subtree by recursively calling the post-order function.
    Traverse the right subtree by recursively calling the post-order function.
    Display the data part of the root (or current node).

ACEDBHIGH

pre-order post-order

in-order
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Recursive Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

inorder(node)
  if (node = null)
    return
  inorder(node.left)
  visit(node)
  inorder(node.right)

preorder(node)
  if (node = null)
    return

visit(node)
  preorder(node.left)
  preorder(node.right)

postorder(node)
  if (node = null)
    return
  postorder(node.left)

postorder(node.right)
  visit(node)
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Pre-Order recursive algorithm

https://en.wikipedia.org/wiki/Tree_traversal

preorder(node)
  if (node = null)
    return

visit(node)
  preorder(node.left)
  preorder(node.right)

F

B

Da

C E

G

H

IA

F

B

Da

C E

G

H

IA

B

Da

C E

A

aA D

C E

C E G

H

I H

I H

F B A D C E G I H
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Iterative Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

iterativeInorder(node)
  s ← empty stack

  while (not s.isEmpty() or 
    node ≠ null)

    if (node ≠ null)
      s.push(node)
      node ← node.left
    else
      node ← s.pop()
      visit(node)

node ← node.right

iterativePreorder(node)
  if (node = null)

return
  s ← empty stack
  s.push(node)

while (not s.isEmpty())
    node ← s.pop()
    visit(node)
    // right child is pushed first 
    // so that left is processed first
    if (node.right ≠ null)
      s.push(node.right)
    if (node.left ≠ null)
      s.push(node.left)

iterativePostorder(node)
  s ← empty stack
  lastNodeVisited ← null

  while (not s.isEmpty() or node ≠ null)
    if (node ≠ null)
      s.push(node)
      node ← node.left
    else
      peekNode ← s.peek()
      // if right child exists and traversing

// node from left child, then move right
      if (peekNode.right ≠ null and 

lastNodeVisited ≠ peekNode.right)
        node ← peekNode.right
      else
        visit(peekNode)
        lastNodeVisited ← s.pop()
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Tree Traversal 

https://en.wikipedia.org/wiki/Morphism

pre-order post-order

in-order



Tree Traversal (1A) 20 Young Won Lim
5/26/18

Stack

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
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Queue

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)#/media/File:Data_Queue.sv
g
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Search Algorithms

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search 

DFS (Depth First Search) BFS (Breadth First Search)
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DFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search 

DFS (Depth First Search)A recursive implementation of DFS:

  procedure DFS(G,v):
      label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
          if vertex w is not labeled as discovered then
              recursively call DFS(G,w)

A non-recuUrsive implementation of DFS:

  procedure DFS-iterative(G,v):
      let S be a stack
      S.push(v)
      while S is not empty
          v = S.pop()
          if v is not labeled as discovered:
              label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
                  S.push(w)
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Search Algorithms

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search 

DFS (Depth First Search) BFS (Breadth First Search)
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BFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search 

BFS (Breadth First Search)

Breadth-First-Search(Graph, root):
    
    create empty set S
    create empty queue Q      

    add root to S
Q.enqueue(root)  

    while Q is not empty:
        current = Q.dequeue()
        if current is the goal:
            return current
        for each node n that is adjacent to current:

if n is not in S:
                add n to S
                n.parent = current
                Q.enqueue(n)
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In-Order

Rosen 

n o p
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e f

b c d
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pre-order post-order

in-order

pre-order post-order

in-order
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Ternary Tree 

Rosen

n o p

j k

e f

b c d

a

g h i

l m

a-b-e-j-k-n-o-p-f-c-d-g-l-m-h-i
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In-Order

Rosen

n o p

j k

e f
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a

g h i

l m

j-e-n-k-o-p-b-f-a-c-l-g-m-d-h-i
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Post-Order

Rosen

n o p

j k

e f
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a

g h i

l m

j-n-o-p-k-e-f-b-c-l-m-g-h-i-d-a
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Ternary 

Ternary 

Etymology
Late Latin ternarius (“consisting of three things”), from terni (“three each”).
Adjective

ternary (not comparable)
    Made up of three things; treble, triadic, triple, triplex
    Arranged in groups of three
    (mathematics) To the base three [quotations ▼]
    (mathematics) Having three variables

https://en.wiktionary.org/wiki/ternary

The sequence continues with quaternary, quinary, senary, septenary, octonary,
nonary, and denary, although most of these terms are rarely used. There's no word 
relating to the number eleven but there is one that relates to the number twelve: 
duodenary.

https://en.oxforddictionaries.com/explore/what-comes-after-primary-secondary-tertiary
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Class of Automata

https://en.wikipedia.org/wiki/Automata_theory
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Finite State Machine

https://en.wikipedia.org/wiki/Automata_theory

The figure at right illustrates a finite-state 
machine, which belongs to a well-known type 
of automaton. 

This automaton consists of 
states (represented in the figure by circles) 
and transitions (represented by arrows). 

As the automaton sees a symbol of input, 
it makes a transition (or jump) 
to another state, according to its transition 
function, which takes the current state and
the recent symbol as its inputs.
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Turing Machine

https://en.wikipedia.org/wiki/Turing_machine
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Pushdown Automaton

https://en.wikipedia.org/wiki/Pushdown_automaton

a pushdown automaton (PDA) is 
a type of automaton that employs a stack
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Finite State Machine

https://en.wikipedia.org/wiki/Finite-state_machine
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NOR-based SR Latch
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NOR-based SR Latch States
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SR Latch Symbols

S

R Q
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SETRESETHOLD NAND based SR Latch

S

R Q

Q

SETRESETHOLD NOR based SR Latch
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NOR-based D Latch
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NOR-based D Latch
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Master-Slave D FlipFlop

D

Y

Y

Q

D

Q

Master D Latch

Slave D Latch

Master-Slave D F/F

Y

the hold output 
of the master is 
transparently 
reaches the 
output of the 
slave

this value is 
held for another
half period

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Master-Slave D FlipFlop – Falling Edge
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Master-Slave D FlipFlop – Rising Edge
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D Latch & D FlipFlop

Level Sensitive  D Latch

Edge Sensitive D FlipFlop
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CK=0 opaque

CK=1→0  transparent
else opaque

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design



Latches and Flip-flops (1A) 16 Young Won Lim
5/25/18

D FlipFlop with Enable
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FF Timing (Ideal)
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Sequence of States

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

(t+1)th 
edge

(t+2)th 
edge

(t+3)th 
edge

(t+4)th 
edge

(t+5)th

edge
(t)th 
edge

Inputs to FFs

Outputs of FFs

? ? ? ? ? ?

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)

D
3:0

Q
3:0

Find inputs to FFs

which will make outputs 
in this sequence

(t+1)th 
edge

(t+2)th 
edge

(t+3)th 
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(t+4)th 
edge

(t+5)th

edge
(t)th 
edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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When NextSt becomes CurrSt

NextSt

CurrSt

Compute NextSt from 
CurrSt, Ta, Tb

This NextSt becomes 
a new CurrSt

Compute NextSt

CurrSt  <= NextSt

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Finding FF Inputs

? ? ? ? ? ?

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5)Q(t)
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D
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D
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D
0

Q
3

Q
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Q
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Q
0

Inputs

Inputs to FFs

Outputs of FFs

During the tth clock edge period, 

Compute the next state Q(t+1)
using the current state Q(t) and 
other external inputs

Place it to FF inputs

After the next clock edge, (t+1)th, 
the computed next state Q(t+1)
becomes the current state   

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Method of Finding FF Inputs

Q(t+1) Q(t+2) Q(t+3) Q(t+4) Q(t+5) Q(t+6)
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Find the boolean functions 
D3, D2, D1, D0
in terms of Q3, Q2, Q1, Q0, 
and external inputs
for all possible cases.

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design



Latches and Flip-flops (1A) 24 Young Won Lim
5/25/18

State Transition

Q(t+1)

Q(t+1)Q(t)

D
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Q
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Q
(t
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Q
(t

+
1
)

Inputs

Q(t+1)

Q(t+1)Q(t)

Inputs

Compute the next state
using the current state 
and external inputs
in the current clock cycle

After the next clock edge, 
the computed next state (FF Inputs)  
becomes the current state (FF Outputs)https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
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Moore FSM

1

clock

INPUT State
Register

Next State
Combinational

Logic

Output 
Combinational

Logic

OUTPUT

D  Q D  Q D  Q 

D  Q D  Q D  Q 

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design



Latches and Flip-flops (1A) 26 Young Won Lim
5/25/18

Mealy Machine

1

clock

INPUT State
Register

Next State
Combinational

Logic

Output 
Combinational

Logic

OUTPUT

D  Q D  Q D  Q 

D  Q D  Q D  Q 

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design



Latches and Flip-flops (1A) 27 Young Won Lim
5/25/18

Latches and FF's

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
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FSM Inputs and Outputs

L
A

L
A

L
B

L
B

T
B

T
B

T
A

T
A

Traffic Lights - Outputs

L
A

L
B

Sensor - Inputs

T
B

T
A

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design



Latches and Flip-flops (1A) 29 Young Won Lim
5/25/18

States 
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Moore FSM State Transition Table
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Moore FSM (1)
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Moore FSM 
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Divide By N Counter FSM
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