Eulerian Cycle (2A)

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

A **path** is a **trail** in which all **vertices** are <u>distinct</u>. (except possibly the first and last)

A trail is a walk in which all edges are distinct.

	Vertices	Edges	
Walk	may	may	(Closed/Open)
	repeat	repeat	
Trail	may	<u>cannot</u>	(Open)
	repeat	repeat	
Path	<u>cannot</u>	<u>cannot</u>	(Open)
	repeat	repeat	
Circuit	may	<u>cannot</u>	(Closed)
	repeat	repeat	
Cycle	<u>cannot</u>	<u>cannot</u>	(Closed)
	repeat	repeat	

https://en.wikipedia.org/wiki/Eulerian_path

Most literatures require that all of the **edges** and **vertices** of a **path** be <u>distinct</u> from one another.

But, some do <u>not require</u> this and instead use the term **simple path** to refer to a **path** which contains <u>no repeated</u> **vertices**.

4

A **simple cycle** may be defined as a **closed walk** with <u>no</u> <u>repetitions</u> of **vertices** and **edges** allowed, other than the <u>repetition</u> of the **starting** and **ending vertex**

There is considerable variation of terminology!!! Make sure which set of definitions are used...

https://en.wikipedia.org/wiki/Eulerian_path

Simple Paths and Cycles

path
$$V_{0,} e_{1,} v_{1,} e_{2,} \cdots, e_{k}, v_{k}$$

cycle
$$v_{0,} e_{1,} v_{1,} e_{2,} \cdots, e_{k}, v_{k} (v_{0} = v_{k})$$

path								
	cycle							

path
$$v_{0,} e_{1,} v_{1,} e_{2,} \cdots, e_{k}, v_{k}$$
 $(v_{0} \neq v_{k})$
cycle $v_{0,} e_{1,} v_{1,} e_{2,} \cdots, e_{k}, v_{k}$ $(v_{0} = v_{k})$

path	cycle

Two different kinds

Euler Cycle

Some people reserve the terms path and cycleno repeating verticesA (potentially) self-intersecting path is known
as a trail or an open walk;repeating verticesand a (potentially) self-intersecting cycle,
a circuit or a closed walk.repeating verticesThis ambiguity can be avoided by using the terms
Eulerian trail and Eulerian circuit
when self-intersection is allowedrepeating vertices

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

the existence of	f Eulerian	cycles
------------------	------------	--------

all **vertices** in the graph have an **even** degree

connected graphs with **all vertices** of **even** degree h ave an **Eulerian cycles**

non-repeating edges repeatable vertices

circuit

Eulerian circuit : more suitable terminology

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

the existence of **Eulerian paths**

all the **vertices** in the graph have an **even** degree

except only two vertices with an odd degree

An **Eulerian path** starts and ends at <u>different</u> vertices An **Eulerian cycle** starts and ends at the <u>same</u> vertex.

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A)

Conditions for Eulerian Cycles and Paths

An odd vertex = a vertex with an odd degree An even vertex = a vertex with an even degree

# of odd vertices	Eulerian Path	Eulerian Cycle
0	No	Yes
2	Yes	No
4,6,8,	No	No
1,3,5,7,	No such graph	No such graph

If the graph is <u>connected</u>

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

# of odd vertices	Eulerian Path	Eulerian Cycle
0	No	Yes
2	Yes	No

Degree of a vertex

the **degree** (or **valency**) of a vertex is the number of edges <u>incident</u> to the vertex, with loops counted twice.

The degree of a vertex v is denoted deg(v) the maximum degree of a graph G, denoted by $\Delta(G)$ the minimum degree of a graph, denoted by $\delta(G)$

 $\begin{array}{l} \Delta(G)=5\\ \delta(G)=0 \end{array}$

In a regular graph, all degrees are the same

https://en.wikipedia.org/wiki/Degree_(graph_theory)

a **regular graph** is a graph where each vertex has the <u>same number</u> of <u>neighbors</u>; i.e. every vertex has the <u>same degree</u> or valency.

https://en.wikipedia.org/wiki/Regular_graph

Eulerian Cycles (2A)

Handshake Lemma

# of odd vertices	Eulerian Path	Eulerian Cycle
0	No	Yes
2	Yes	No
4,6,8,	No	No
1,3,5,7,	No such graph	No such graph

The degree sum formula states that, given a graph G = (V, E)うろんごと

$$\sum_{v\in V} \deg(v) = 2|E|$$

The formula implies that in any graph, the number of vertices with odd degree is even.

This statement (as well as the degree sum formula) is known as the handshaking lemma.

The number of odd vertices

 $F : even = \sum n \text{ odd numbers}$ $T : even = \sum n \text{ odd numbers}$ R : even

The formula implies that in any graph, the number of vertices with <u>odd degree</u> is <u>even</u>.

References

Hamiltonian Cycle (3A)

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

A tournament (with more than two vertices) is Hamiltonian if and only if it is **strongly connected**.

The number of different Hamiltonian cycles in a **complete undirected** graph on **n** vertices is **(n – 1)! / 2** in a complete directed graph on n vertices is (n – 1)!.

These counts assume that cycles that are the same apart from their starting point are not counted separately.

https://en.wikipedia.org/wiki/Hamiltonian_path

Number of Hamiltonian Cycles (1)

(5-1)!=24

https://en.wikipedia.org/wiki/Hamiltonian_path

ABCDE	BACDE	CABDE	DABCE	EABCD
ABCED	BACED	CABED	DABEC	EABDC
ABDCE	BADCE	CADBE	DACBE	EACBD
ABDEC	BADEC	CADEB	DACEB	EACDB
ABECD	BAECD	CAEBD	DADBC	EADBC
ABEDC	BAEDC	CAEDB	DADCB	EADCB
ACBDE	BCADE	CBADE	DBACE	EBACD
ACBED	BCAED	CBAED	DBAEC	EBADC
ACDBE	BCDAE	CBDAE	DBCAE	EBCAD
ACDEB	BCDEA	CBDEA	DBCEA	EBCDA
ACEBD	BCEAD	CBEAD	DBEAC	EBDAC
ACEDB	BCEDA	CBEDA	DBECA	EBDCA
ADBCE	BDACE	CDABE	DCABE	ECABD
ADBEC	BDAEC	CDAEB	DCAEB	ECADB
ADCBE	BDCAE	CDBAE	DCBAE	ECBAD
ADCEB	BDCEA	CDBEA	DCBEA	ECBDA
ADEBC	BDEAC	CDEAB	DCEAB	ECDAB
ADECB	BDECA	CDEBA	DCEBA	ECDBA
AEBCD	BEACD	CEABD	DEABC	EDABC
AEBDC	BEADC	CEADB	DEACB	EDACB
AECBD	BECAD	CEBAD	DEBAC	EDBAC
AECDB	BECDA	CEBDA	DEBCA	EDBCA
AEDBC	BEDAC	CEDAB	DECAB	EDCAB
AEDCB	BEDCA	CEDBA	DECBA	EDCBA

Hamiltonian Cycles (3A)

Number of Hamiltonian Cycles (2)

$$(5-1)!=24$$

https://en.wikipedia.org/wiki/Hamiltonian_path

Α	BCDE	AB	CDE	ABC	DE	ABCD	E	ABCDE
				ABD	CE	ABCE	D	ABCED
		AC	BDE	ABE	CD	ABDC	E	ABDCE
						ABDE	С	ABDEC
		AD	BCE	ACB	DE	ABEC	D	ABECD
				ACD	BE	ABED	С	ABEDC
		AE	BCD	ACE	BD			
						ACBD	E	ACBDE
				ADB	CE	ACBE	D	ACBED
				ADC	BE	ACDB	E	ACDBE
				ADE	BC	ACDE	В	ACDEB
						ACEB	D	ACEBD
				AEB	CD	ACED	В	ACEDB
				AEC	BD			
				AED	BC	ADBC	E	ADBCE
						ADBE	С	ADBEC
						ADCB	E	ADCBE
						ADCE	В	ADCEB
						ADEB	С	ADEBC
						ADEC	В	ADECB
						AEBC	D	AEBCD
						AEBD	С	AEBDC
						AECB	D	AECBD
						AECD	В	AECDB
						AEDB	С	AEDBC
						AEDC	В	AEDCB

Hamiltonian Cycles (3A)

Eulerian Graph (1)

The Eulerian cycle corresponds to a Hamiltonian cycle in the line graph L(G), so the line graph of every Eulerian graph is Hamiltonian graph.

Hamiltonian Cycles (3A)

a directed graph is said to be **strongly connected** or **diconnected** if every **vertex** is reachable from every other **vertex**.

The strongly connected components or diconnected components of an arbitrary directed graph form a partition into subgraphs that are themselves strongly connected.

Graph with strongly connected components marked

https://en.wikipedia.org/wiki/Hamiltonian_path

a directed graph is **strongly connected** if there is a **path** from **a** to **b** and from **b** to **a** whenever **a** and **b** are **vertices** in the graph

a directed graph is **weakly connected** if there is a **path** between every two **vertices** in the underlying undirected graph (either way) directions of edges are disregarded

Discrete Mathematics, Rosen

SC examples (1)

Discrete Mathematics, Rosen

Hamiltonian Cycles (3A)

Young Won Lim 5/18/18

SC examples (2)

Discrete Mathematics, Rosen

Hamiltonian Cycles (3A)

Young Won Lim 5/18/18

SCC and WCC examples

three strongly connected components

one weakly connected components

Discrete Mathematics, Rosen

Hamiltonian Cycles (3A)

Young Won Lim 5/18/18

References

Isomorphic Graph (8A)

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Graph Isomorphism

The two graphs shown below are **isomorphic**, despite their <u>different</u> <u>looking</u> drawings.

https://en.wikipedia.org/wiki/Graph_isomorphism

Graph G_1 and its Adjacency Matrix

4

	a	b	С	d	g	h	i	j
a	0	0	0	0	1	1	1	0
b	0	0	0	0	1	1	0	1
С	0	0	0	0	1	0	1	1
d	0	0	0	0	0	1	1	1
g	1	1	1	0	0	0	0	0
h	1	1	0	1	0	0	0	0
i	1	0	1	1	0	0	0	0
j	0	1	1	1	0	0	0	0

https://en.wikipedia.org/wiki/Graph_isomorphism

Isomorphic Graph (5B)

	1	2	3	4	5	6	7	8
1	0	1	0	1	1	0	0	0
2	1	0	1	0	0	1	0	0
3	0	1	0	1	0	0	1	0
4	1	0	1	0	0	0	0	1
5	1	0	0	0	0	1	0	1
6	0	1	0	0	1	0	1	0
7	0	0	1	0	0	1	0	1
8	0	0	0	1	1	0	1	0

edge-preserving bijection structure-preserving bijection.

https://en.wikipedia.org/wiki/Graph_isomorphism

Bijection Mapping f

Converting the Adjacency Matrix

permuting the rows and columns

Adjacency Matrix of G₁

Adjacency Matrix of G₂

Converting the Adjacency Matrix

	1	6	8	3	5	2	4	7
1	0	0	0	0	1	1	1	0
6	0	0	0	0	1	1	0	1
8	0	0	0	0	1	0	1	1
3	0	0	0	0	0	1	1	1
5	1	1	1		0	0	0	0
2	1	1	0	1	0	0	0	0
4	1	0	1	1	0	0	0	0
7	0	1	1	1	0	0	0	0

	1	2	3	4	5	6	7	8
1	0	1	0	1	1	0	0	0
6	0	1	0	0	1	0	1	0
8	0	0	0	1	1	0	1	0
3	0	1	0	1	0	0	1	0
5	1	0	0	0	0	1	0	1
2	1	0	1	0	0	1	0	0
4	1	0	1	0	0	0	0	1
7	0	0	1	0	0	1	0	1

G₁ adjacency matrix after maping

G₂ adjacency matrix after permuting rows and columns
References

Planar Graph (7A)

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints.

it can be drawn in such a way that no edges cross each other. Such a drawing is called a **plane graph** or **planar embedding** of the graph. (**planar representation**)

A **plane graph** can be defined as a planar graph with a mapping from every <u>node</u> to a <u>point</u> on a <u>plane</u>, and from every <u>edge</u> to a <u>plane curve</u> on that plane, such that the extreme points of each curve are the points mapped from its <u>end</u> nodes, and all curves are <u>disjoint</u> except on their extreme points.

Planar Graph Examples

4

https://en.wikipedia.org/wiki/Planar_graph

Planar Graph (7A)

Young Won Lim 5/19/18

Planar Representation

Planar Graph (7A)

5

Non-planar Graph K_{3,3}

no where v_6

Non-planar

Discrete Mathematics, Rosen

Planar Graph (7A)

two graphs G and G' are **homeomorphic** if there is a graph **isomorphism** from some **subdivision** of G to some **subdivision** of G'. homeo (identity, sameness) iso (equal)

https://en.wikipedia.org/wiki/Planar_graph

Planar Graph (7A)

Subdivision and Smoothing

https://en.wikipedia.org/wiki/Planar_graph

8

Homeomorphism Examples

5/19/18

Embedding on a surface

subdividing a graph preserves planarity.

Kuratowski's theorem states that

a finite graph is **planar** if and only if it contains **no** subgraph **homeomorphic** to K_5 (complete graph on five vertices) or $K_{3,3}$ (complete bipartite graph on six vertices, three of which connect to each of the other three).

In fact, a graph homeomorphic to K_5 or $K_{3,3}$ is called a Kuratowski subgraph.

A finite graph is planar if and only if it does <u>not</u> contain a **subgraph** that is a **subdivision** of the complete graph K_5 or the complete bipartite graph K_{33} (utility graph).

A subdivision of a graph results from inserting vertices into edges (changing an edge •——• to •—•) zero or more times.

 K_5 or $K_{3,3}$ subgraph. However, it contains a subdivision of $K_{3,3}$ and is therefore non-planar.

Kuratowski's Theorem

A subdivision of $K_{3,3}$

Non-planar graph examples

Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then

v - e + f = 2

In a finite, connected, simple, planar graph, any face (except possibly the outer one) is bounded by at least three edges and every edge touches at most two faces; using Euler's formula, one can then show that these graphs are sparse in the sense that if $v \ge 3$:

 $e \le 3 v - 6$

the dual graph of a plane graph G is a graph that has a **vertex** for each **face** of G.

The dual graph has an **edge** whenever two **faces** of G are <u>separated</u> from each other by an **edge**,

and a **self-loop** when the <u>same</u> **face** appears on <u>both</u> <u>sides</u> of an **edge**.

each **edge e** of G has a corresponding <u>dual</u> <u>edge</u>, whose <u>endpoints</u> are the <u>dual</u> <u>vertices</u> corresponding to the **faces** on <u>either</u> <u>side</u> of **e**.

https://en.wikipedia.org/wiki/Hamiltonian_path

Dual Graph

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Stick Layout

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Hamiltonian Cycles (3A)

Young Won Lim 5/19/18

Stick Graph and Logic Diagram

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Hamiltonian Cycles (3A)

Stick Graph and Logic Diagram

uninterrupted diffusion strip

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

consistent Euler paths (PUN & PDN)

References

Graph Search (6A)

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

graph traversal (graph search) refers to the process of <u>visiting</u> (checking and/or updating) each **vertex** in a graph.

Such traversals are <u>classified</u> by the <u>order</u> in which the vertices are visited.

Tree traversal is a special case of graph traversal.

https://en.wikipedia.org/wiki/Graph_traversal

General Graph Search Algorithm

```
Search( start, isGoal, criteria)
insert(Start, Open);
repeat
if (empty(Open)) then return fail;
select node from Open using Criteria;
mark node as visited;
if (isGoal(node)) then return node;
```

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

4

```
Open – Stack
Criteria – pop
DFS( Start, isGoal)
push(Start, Open);
repeat
if (empty(Open)) then return fail;
node := pop(Open);
Mark node as visited;
if (isGoal(node)) then return node;
for each child of node do
if (child not already visited) then
push(child, Open);
```

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Open – Stack Criteria – **dequeue**

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Algorithm Search

```
Initialize as follows:

unmark all nodes in N;

mark node s;

pred(s) = 0; {that is, it has no predecessor}

LIST = {s}

while LIST ≠ Ø do

select a node i in LIST;

if node i is incident to an admissible arc (i,j) then

mark node j;

pred(j) := i;

add node j to the end of LIST;

else

delete node i from LIST
```

Algorithm Search

```
Initialize as follows:
    unmark all nodes in N;
    mark node s;
    pred(s) = 0; {that is, it has no predecessor}
    LIST = {s}
while LIST ≠ Ø do
    select a node i in LIST;
    if node i is incident to an admissible arc (i,j) then
        mark node j;
        pred(j) := i;
        add node j to the end of LIST;
    else
        delete node i from LIST
```

DFS : select the last node i in LIST; **BFS : select** the first node i in LIST;

Algorithm Search

```
Initialize as follows:

unmark all nodes in N;

mark node s;

pred(s) = 0; {that is, it has no predecessor}

LIST = {s}

while LIST ≠ Ø do

select a node i in LIST;

if node i is incident to an admissible arc (i,j) then

mark node j;

pred(j) := i;

add node j to the end of LIST;

else

delete node i from LIST
```

- **DFS : select** the last node i in LIST;
- BFS : select the first node i in LIST;

pred(j) is a node that precedes j on some path from s;

A node is either **marked** or **unmarked**. Initially only node s is marked. If a node is marked, it is **reachable** from node s. An arc (i,j) \in A is **admissible** if node i is <u>marked</u> and j is <u>not</u>.

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

Graph Search (6A)

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

Graph Search (6A)

Expand Function

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

DFS (Depth First Search)

BFS (Breadth First Search)

DFS Pseudocode

1 procedure DFS(G, v):

- 2 label v as explored
- 3 for all edges e in G.incidentEdges(v) do
- if edge e is unexplored then 4
- 5 w - G.adjacentVertex(v, e)
- 6 if vertex w is unexplored then 7
 - label e as a discovered edge
- 8 recursively call DFS(G, w)
- 9 else
- 10 label e as a back edge

https://en.wikipedia.org/wiki/Graph traversal

Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

Depth First Search Example

cbbeegc

 \mathbf{O}

b

е

g

а

С

S

h

i.

cbbeegg

 \mathbf{C}

b

а

С

S

h

е

g

A depth-first search (DFS) is an algorithm for traversing a finite graph.

DFS visits the **child vertices** before visiting the **sibling vertices**;

that is, it traverses the **depth** of any particular path <u>before</u> exploring its breadth.

A **stack** (often the program's call stack via recursion) is generally used when implementing the algorithm.

https://en.wikipedia.org/wiki/Graph_traversal

The algorithm begins with a chosen "root" vertex;

it then iteratively transitions from the **current** vertex to an **adjacent**, **unvisited** vertex, until it can <u>no longer</u> find an unexplored vertex to transition to from its current location.

The algorithm then **backtracks** along previously visited vertices, until it finds a vertex connected to yet more uncharted territory.

It will then proceed down the new path as it had before, backtracking as it encounters **dead-ends**, and ending only when the algorithm has backtracked past the original "root" vertex from the very first step.

https://en.wikipedia.org/wiki/Graph_traversal

Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

Young Won Lim 5/18/18 A breadth-first search (BFS) is another technique for traversing a finite graph.

BFS visits the **neighbor** vertices before visiting the **child** vertices

a queue is used in the search process

This algorithm is often used to find the **shortest path** from one vertex to another.

https://en.wikipedia.org/wiki/Graph_traversal

BFS Pseudocode

1 procedure BFS(G, v):

- 2 create a queue Q
- 3 enqueue v onto Q
- 4 mark v
- 5 while Q is not empty:
- 6 t ← Q.dequeue()
- 7 if t is what we are looking for:
- 8 return t
- 9 for all edges e in G.adjacentEdges(t) do
- 12 $o \leftarrow G.adjacentVertex(t, e)$
- if o is not marked:
- 14 mark o
- 15 enqueue o onto Q
- 16 return null

https://en.wikipedia.org/wiki/Graph_traversal

References

Binary Search Tree (2A)

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Bnary search trees (BST), ordered binary trees sorted binary trees

are a particular type of container: data structures that store "items" (such as numbers, names etc.) in memory.

They allow fast lookup, addition and removal of items can be used to implement either dynamic sets of items lookup tables that allow finding an item by its key (e.g., finding the phone number of a person by name).

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order lookup operations can use the principle of binary search

when looking for a key in a tree or looking for a place to insert a new key, they traverse the tree from root to leaf, making comparisons to keys stored in the nodes Deciding to continue in the left or right subtrees, on the basis of the comparison.

allowing to skip searching half of the tree each operation (lookup, insertion or deletion) takes time proportional to log n

much better than the linear time but slower than the corresponding operations on hash tables.

https://en.wikipedia.org/wiki/Binary_search_tree

A binary search tree of size 9 and depth 3, with 8 at the root. The leaves are not drawn.

3 < 8 < 10	
1 < 3 < 6	10 < 14
4 < 6 < 7	13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

6

1, 3, 4, 6, 7 < 8 < 10, 13, 141 < 3 < 4, 6, 710 < 13, 144 < 6 < 713 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

1,3,4,6,7 < 8 < 10,13,14 1 < 3 < 4,6,7 4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (2A)

Young Won Lim 5/17/18

Binary Search Tree (2A)

Binary Search

https://en.wikipedia.org/wiki/Binary_search_algorithm

Insertion

Insertion begins as a search would begin; if the key is not equal to that of the root, we search the left or right subtrees as before. Eventually, we will reach an external node and add the new key-value pair (here encoded as a record 'newNode') as its right or left child, depending on the node's key. In other words, we examine the root and recursively insert the new node to the left subtree if its key is less than that of the root, or the right subtree if its key is greater than or equal to the root.

Deletion

- 1. Deleting a node with no children: simply remove the node from the tree.
- 2. Deleting a node with one child: remove the node and replace it with its child.
- 3. Deleting a node with two children: call the node to be deleted D. Do not delete D. Instead, choose either its in-order predecessor node or its in-order successor node as replacement node E. Copy the user values of E to D If E does not have a child simply remove E from its previous parent G. If E has a child, say F, it is a right child. Replace E with F at E's parent.

Deletion

References

Binary Search Tree (2A)

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Bnary search trees (BST), ordered binary trees sorted binary trees

are a particular type of container: data structures that store "items" (such as numbers, names etc.) in memory.

They allow fast lookup, addition and removal of items can be used to implement either dynamic sets of items lookup tables that allow finding an item by its key (e.g., finding the phone number of a person by name).

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order lookup operations can use the principle of binary search

when looking for a key in a tree or looking for a place to insert a new key, they traverse the tree from root to leaf, making comparisons to keys stored in the nodes Deciding to continue in the left or right subtrees, on the basis of the comparison.

allowing to skip searching half of the tree each operation (lookup, insertion or deletion) takes time proportional to log n

much better than the linear time but slower than the corresponding operations on hash tables.

https://en.wikipedia.org/wiki/Binary_search_tree

A binary search tree of size 9 and depth 3, with 8 at the root. The leaves are not drawn.

3 < 8 < 10	
1 < 3 < 6	10 < 14
4 < 6 < 7	13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7 < 8 < 10, 13, 141 < 3 < 4, 6, 710 < 13, 144 < 6 < 713 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search

https://en.wikipedia.org/wiki/Binary_search_algorithm

Insertion

Insertion begins as a search would begin; if the key is not equal to that of the root, we search the left or right subtrees as before. Eventually, we will reach an external node and add the new key-value pair (here encoded as a record 'newNode') as its right or left child, depending on the node's key. In other words, we examine the root and recursively insert the new node to the left subtree if its key is less than that of the root, or the right subtree if its key is greater than or equal to the root.

Deletion

- 1. Deleting a node with no children: simply remove the node from the tree.
- 2. Deleting a node with one child: remove the node and replace it with its child.
- 3. Deleting a node with two children: call the node to be deleted D. Do not delete D. Instead, choose either its in-order predecessor node or its in-order successor node as replacement node E. Copy the user values of E to D If E does not have a child simply remove E from its previous parent G. If E has a child, say F, it is a right child. Replace E with F at E's parent.

Deletion

References

