
Young Won Lim
5/19/18

Eulerian Cycle (2A)

Young Won Lim
5/19/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Eulerian Cycles (2A) 3 Young Won Lim
5/19/18

Path and Trail

https://en.wikipedia.org/wiki/Eulerian_path

A path is a trail in which all vertices are distinct.
(except possibly the first and last)

A trail is a walk in which all edges are distinct.

Vertices Edges

 Walk may may (Closed/Open)

repeat repeat

 Trail may cannot (Open)

 repeat repeat

 Path cannot cannot (Open)

 repeat repeat

 Circuit may cannot (Closed)

 repeat repeat

Cycle cannot cannot (Closed)

 repeat repeat

Eulerian Cycles (2A) 4 Young Won Lim
5/19/18

Simple Paths and Cycles

https://en.wikipedia.org/wiki/Eulerian_path

Most literatures require that all of the edges and vertices of a
path be distinct from one another.

But, some do not require this and instead use the term simple
path to refer to a path which contains no repeated vertices.

A simple cycle may be defined as a closed walk with no
repetitions of vertices and edges allowed, other than the
repetition of the starting and ending vertex

There is considerable variation of terminology!!!
Make sure which set of definitions are used...

Eulerian Cycles (2A) 5 Young Won Lim
5/19/18

Simple Paths and Cycles

path cycle

simple
path

simple
cycle

trail circuit

path cycle

Most literatures some

narrow sense path & cycle wide sense path & cycle

Eulerian Cycles (2A) 6 Young Won Lim
5/19/18

Paths and Cycles

v0, e1, v1, e2, ⋯ , ek , vk

v0

e
1

v1

e
2

v2

e
3

v3

ek

vk

⋯

v0, e1, v1, e2, ⋯ , ek , vk (v0 = vk)

path

cycle

v0, e1, v1, e2, ⋯ , ek , vk

v0, e1, v1, e2, ⋯ , ek , vk (v0 = vk)

path

cycle

(v0 ≠ vk)

path

cycle

cyclepath

One of a kind

Two different kinds

Eulerian Cycles (2A) 7 Young Won Lim
5/19/18

Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

Some people reserve the terms path and cycle
to mean non-self-intersecting path and cycle.

A (potentially) self-intersecting path is known
as a trail or an open walk;

and a (potentially) self-intersecting cycle,
a circuit or a closed walk.

This ambiguity can be avoided by using the terms
Eulerian trail and Eulerian circuit
when self-intersection is allowed

no repeating vertices

repeating vertices

repeating vertices

repeating vertices

Eulerian Cycles (2A) 8 Young Won Lim
5/19/18

Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

the existence of Eulerian cycles

all vertices in the graph have an even degree

connected graphs with all vertices of even degree h
ave an Eulerian cycles

non-repeating edges
repeatable vertices

Eulerian circuit : more suitable terminology

circuit

Eulerian Cycles (2A) 9 Young Won Lim
5/19/18

Euler Path

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

the existence of Eulerian paths

all the vertices in the graph have an even degree

except only two vertices with an odd degree

An Eulerian path starts and ends at different vertices
An Eulerian cycle starts and ends at the same vertex.

non-repeating edges
repeatable vertices

Eulerian trail : more suitable terminology

trail

Eulerian Cycles (2A) 10 Young Won Lim
5/19/18

Conditions for Eulerian Cycles and Paths

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

An odd vertex = a vertex with an odd degree

An even vertex = a vertex with an even degree

of odd vertices Eulerian Path Eulerian Cycle

0 No Yes

2 Yes No

4,6,8, … No No

1,3,5,7, … No such graph No such graph

If the graph is connected

Eulerian Cycles (2A) 11 Young Won Lim
5/19/18

The number of odd vertices

of odd vertices Eulerian Path Eulerian Cycle

0 No Yes

2 Yes No

No Eulerian Path No Eulerian Cycle

Eulerian Cycle Eulerian Path

of odd vertices
= 0

of odd vertices
= 2

Eulerian Cycles (2A) 35 Young Won Lim
5/19/18

Degree of a vertex

https://en.wikipedia.org/wiki/Degree_(graph_theory)

 the degree (or valency) of a vertex is
the number of edges incident to the vertex,
with loops counted twice.

The degree of a vertex v is denoted deg(v)
the maximum degree of a graph G, denoted by Δ(G)
the minimum degree of a graph, denoted by δ(G)

Δ(G) = 5
δ(G) = 0

In a regular graph, all degrees are the same

3

3

2
1

2

5
0

Eulerian Cycles (2A) 36 Young Won Lim
5/19/18

Regular Graphs

https://en.wikipedia.org/wiki/Regular_graph

a regular graph is a graph where each vertex has the
same number of neighbors; i.e. every vertex has the
same degree or valency.

Eulerian Cycles (2A) 37 Young Won Lim
5/19/18

Handshake Lemma

https://en.wikipedia.org/wiki/Degree_(graph_theory)

The degree sum formula states that,
given a graph G = (V , E)

The formula implies that in any graph,
the number of vertices with odd degree is even.

This statement (as well as the degree sum formula) is
known as the handshaking lemma.

3

3

2
1

2

5
0

Eulerian Cycles (2A) 38 Young Won Lim
5/19/18

The number of odd vertices

Odd vertices : Even vertices :

The formula implies that in any graph,
the number of vertices with odd degree is even.

{x
1,
x

2,
⋯ , xn} {y

1,
y

2,
⋯ , yn}

S = deg(x
1
) + deg(x

2
) + ⋯ + deg(xn) T = deg(y

1
) + deg(y

2
) + ⋯ + deg(yn)

deg(xi) : even deg(yi) : odd

S : even

S+T : even

T : even = ∑ n odd numbers

S = even + even + ⋯ + even T = odd + odd + ⋯ + odd

n : even

Young Won Lim
5/19/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/18/18

Hamiltonian Cycle (3A)

Young Won Lim
5/18/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Hamiltonian Cycles (3A) 23 Young Won Lim
5/18/18

Hamiltonian Cycles – Properties (3)

https://en.wikipedia.org/wiki/Hamiltonian_path

A tournament (with more than two vertices) is Hamiltonian if and
only if it is strongly connected.

The number of different Hamiltonian cycles
in a complete undirected graph on n vertices is (n − 1)! / 2
in a complete directed graph on n vertices is (n − 1)!.

These counts assume that cycles that are the same apart from
their starting point are not counted separately.

Hamiltonian Cycles (3A) 24 Young Won Lim
5/18/18

Number of Hamiltonian Cycles (1)

https://en.wikipedia.org/wiki/Hamiltonian_path

E

C D

A

B

ABCDE

ABCED

ABDCE

ABDEC

ABECD

ABEDC

ACBDE

ACBED

ACDBE

ACDEB

ACEBD

ACEDB

ADBCE

ADBEC

ADCBE

ADCEB

ADEBC

ADECB

AEBCD

AEBDC

AECBD

AECDB

AEDBC

AEDCB

BACDE

BACED

BADCE

BADEC

BAECD

BAEDC

BCADE

BCAED

BCDAE

BCDEA

BCEAD

BCEDA

BDACE

BDAEC

BDCAE

BDCEA

BDEAC

BDECA

BEACD

BEADC

BECAD

BECDA

BEDAC

BEDCA

DABCE

DABEC

DACBE

DACEB

DADBC

DADCB

DBACE

DBAEC

DBCAE

DBCEA

DBEAC

DBECA

DCABE

DCAEB

DCBAE

DCBEA

DCEAB

DCEBA

DEABC

DEACB

DEBAC

DEBCA

DECAB

DECBA

CABDE

CABED

CADBE

CADEB

CAEBD

CAEDB

CBADE

CBAED

CBDAE

CBDEA

CBEAD

CBEDA

CDABE

CDAEB

CDBAE

CDBEA

CDEAB

CDEBA

CEABD

CEADB

CEBAD

CEBDA

CEDAB

CEDBA

EABCD

EABDC

EACBD

EACDB

EADBC

EADCB

EBACD

EBADC

EBCAD

EBCDA

EBDAC

EBDCA

ECABD

ECADB

ECBAD

ECBDA

ECDAB

ECDBA

EDABC

EDACB

EDBAC

EDBCA

EDCAB

EDCBA

(5−1)!=24

Hamiltonian Cycles (3A) 25 Young Won Lim
5/18/18

Number of Hamiltonian Cycles (2)

https://en.wikipedia.org/wiki/Hamiltonian_path

E

C D

A

B

(5−1)!=24

A BCDE AB CDE

AC BDE

AD BCE

AE BCD

ABC DE

ABD CE

ABE CD

ACB DE

ACD BE

ACE BD

ADB CE

ADC BE

ADE BC

AEB CD

AEC BD

AED BC

ABCD E

ABCE D

ABDC E

ABDE C

ABEC D

ABED C

ACBD E

ACBE D

ACDB E

ACDE B

ACEB D

ACED B

ADBC E

ADBE C

ADCB E

ADCE B

ADEB C

ADEC B

AEBC D

AEBD C

AECB D

AECD B

AEDB C

AEDC B

ABCDE

ABCED

ABDCE

ABDEC

ABECD

ABEDC

ACBDE

ACBED

ACDBE

ACDEB

ACEBD

ACEDB

ADBCE

ADBEC

ADCBE

ADCEB

ADEBC

ADECB

AEBCD

AEBDC

AECBD

AECDB

AEDBC

AEDCB

Hamiltonian Cycles (3A) 26 Young Won Lim
5/18/18

Eulerian Graph (1)

B

D E

A

C

Eulerian Cycle
ABCDECA

4

2

3

1

6

5

B

D E

A

C

4

2

3

1

6

5 3

6 2

5

4

1

G L(G)

Hamiltonian Cycle
1-2-3-4-5-6-1

The Eulerian cycle corresponds to a Hamiltonian cycle in
the line graph L(G), so the line graph of every Eulerian
graph is Hamiltonian graph.

Hamiltonian Cycles (3A) 27 Young Won Lim
5/18/18

Strongly Connected Component

https://en.wikipedia.org/wiki/Hamiltonian_path

a directed graph is said to be strongly connected or
diconnected if every vertex is reachable from every other vertex.

The strongly connected components or diconnected
components of an arbitrary directed graph form a partition into
subgraphs that are themselves strongly connected.

Hamiltonian Cycles (3A) 28 Young Won Lim
5/18/18

SCC and WCC

Discrete Mathematics, Rosen

a directed graph is strongly connected
if there is a path from a to b and from b to a
whenever a and b are vertices in the graph

a directed graph is weakly connected
if there is a path between every two vertices
in the underlying undirected graph
(either way)
directions of edges are disregarded

Hamiltonian Cycles (3A) 29 Young Won Lim
5/18/18

SC examples (1)

E

A B

D

C

Discrete Mathematics, Rosen

Hamiltonian Cycles (3A) 30 Young Won Lim
5/18/18

SC examples (2)

E

A B

D

C

Discrete Mathematics, Rosen

Hamiltonian Cycles (3A) 31 Young Won Lim
5/18/18

SCC and WCC examples

E

A B

D

C

Discrete Mathematics, Rosen

E

A B

D

C

 three strongly connected components

 one weakly connected components

Young Won Lim
5/18/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/18/18

Isomorphic Graph (8A)

Young Won Lim
5/18/18

 Copyright (c) 2015 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Isomorphic Graph (5B) 3 Young Won Lim
5/18/18

Graph Isomorphism

The two graphs shown below are isomorphic,

despite their different looking drawings.

https://en.wikipedia.org/wiki/Graph_isomorphism

f(a) = 1

f(b) = 6

f(c) = 8

f(d) = 3

f(g) = 5

f(h) = 2

f(i) = 4

f(j) = 7

Isomorphic Graph (5B) 4 Young Won Lim
5/18/18

Graph G
1
 and its Adjacency Matrix

https://en.wikipedia.org/wiki/Graph_isomorphism

0 0 0 0 1 1 1 0

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

a

b

c

d

g

h

i

j

a b c d g h i j

Isomorphic Graph (5B) 5 Young Won Lim
5/18/18

Graph G
2
 and its Adjacency Matrix

0 00 11 1 0

1 01 00 0 0

0 00 01 1 1

0 11 00 0 0

1 10 00 0 0

0 00 11 0 1

1 11 00 0 0

0 00 10 1 1

6 83 52 4 7

01

12

03

14

15

06

07

08

1

https://en.wikipedia.org/wiki/Graph_isomorphism

edge-preserving bijection

structure-preserving bijection.

Isomorphic Graph (5B) 6 Young Won Lim
5/18/18

Bijection Mapping f

0 0 0 0 1 1 1 0

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

a

b

c

d

g

h

i

j

a b c d g h i j

1

6

8

3

5

2

4

7

1 6 8 3 5 2 4 7

a

b

c

d

g

h

i

j

1

2

3

4

5

6

7

8

Isomorphic Graph (5B) 7 Young Won Lim
5/18/18

Converting the Adjacency Matrix

permuting the rows and columns

0 0 0 0 1 1 1 0

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

6

8

3

5

2

4

7

1 6 8 3 5 2 4 7

0 00 11 1 0

1 01 00 0 0

0 00 01 1 1

0 11 00 0 0

1 10 00 0 0

0 00 11 0 1

1 11 00 0 0

0 00 10 1 1

6 83 52 4 7

01

12

03

14

15

06

07

08

1

Adjacency Matrix of G
1

Adjacency Matrix of G
2

Isomorphic Graph (5B) 8 Young Won Lim
5/18/18

Converting the Adjacency Matrix

0 0 0 0 1 1 1 0

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

6

8

3

5

2

4

7

1 6 8 3 5 2 4 7

0

0

0

0

1

1

1

0

1

6

8

3

5

2

4

7

1

1

1

0

1

0

0

0

0

2

0

0

0

0

0

1

1

1

3

1

0

1

1

0

0

0

0

4

1

1

1

0

0

0

0

0

5

0

0

0

0

1

1

0

1

6

0

1

1

1

0

0

0

0

7

0

0

0

0

1

0

1

1

8

01

1

1

2

0

3

1

4

1

5

0

6

0

7

0

8

12 0 1 0 0 1 0 0

03 1 0 1 0 0 1 0

14 0 1 0 0 0 0 1

15 0 0 0 0 1 0 1

06 1 0 0 1 0 1 0

07 0 1 0 0 1 0 1

08 0 0 1 1 0 1 0

G
1
 adjacency matrix

after maping

G
2
 adjacency matrix

after permuting
rows and columns

Young Won Lim
5/18/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/19/18

Planar Graph (7A)

Young Won Lim
5/19/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Planar Graph (7A) 3 Young Won Lim
5/19/18

Planar Graph

https://en.wikipedia.org/wiki/Planar_graph

a planar graph is a graph that can be embedded in the
plane, i.e., it can be drawn on the plane in such a way
that its edges intersect only at their endpoints.

it can be drawn in such a way that no edges cross each
other. Such a drawing is called a plane graph or planar
embedding of the graph. (planar representation)

A plane graph can be defined as a planar graph with a
mapping from every node to a point on a plane, and from
every edge to a plane curve on that plane,
such that the extreme points of each curve are the points
mapped from its end nodes, and all curves are disjoint
except on their extreme points.

Planar Graph (7A) 4 Young Won Lim
5/19/18

Planar Graph Examples

https://en.wikipedia.org/wiki/Planar_graph

Planar Graph (7A) 5 Young Won Lim
5/19/18

Planar Representation

Discrete Mathematics, Rosen

K
4 Q

3

No crossing No crossing

K
4

Planar Q
3 Planar

Planar Graph (7A) 6 Young Won Lim
5/19/18

Non-planar Graph K
3,3

Discrete Mathematics, Rosen

v
1

v
2

v
3

v
4

v
5

v
6

v
1

v
2v

4

v
5

R
2

R
1

v
1

v
2v

4

v
5

R
1v

3

R
21

R
22

no where v
6

Non-planar

Planar Graph (7A) 7 Young Won Lim
5/19/18

Homeomorphism

https://en.wikipedia.org/wiki/Planar_graph

two graphs G and G′ are homeomorphic
if there is a graph isomorphism
from some subdivision of G
to some subdivision of G′.

homeo (identity, sameness)

iso (equal)

Planar Graph (7A) 8 Young Won Lim
5/19/18

Subdivision and Smoothing

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Smoothing

Planar Graph (7A) 9 Young Won Lim
5/19/18

Homeomorphism Examples

https://en.wikipedia.org/wiki/Planar_graph

Subdivision

Subdivision

isomorphichomeomorphic
Subdivision

Planar Graph (7A) 10 Young Won Lim
5/19/18

Embedding on a surface

https://en.wikipedia.org/wiki/Planar_graph

subdividing a graph preserves planarity.

Kuratowski's theorem states that

 a finite graph is planar if and only if
it contains no subgraph homeomorphic
to K

5
 (complete graph on five vertices) or

K
3,3

 (complete bipartite graph on six vertices,

three of which connect to each of the other three).

In fact, a graph homeomorphic to K
5
 or K

3,3

is called a Kuratowski subgraph.

Planar Graph (7A) 11 Young Won Lim
5/19/18

Kuratowski’s Theorem

https://en.wikipedia.org/wiki/Planar_graph

A finite graph is planar if and only if
it does not contain a subgraph
that is a subdivision of the complete graph K

5
 or

the complete bipartite graph K
3,3

(utility graph).

A subdivision of a graph results
from inserting vertices into edges
(changing an edge •——• to •—•—•)
zero or more times.

Planar Graph (7A) 12 Young Won Lim
5/19/18

Kuratowski’s Theorem

https://en.wikipedia.org/wiki/Planar_graph

Planar Graph (7A) 13 Young Won Lim
5/19/18

A subdivision of K
3,3

Planar Graph (7A) 14 Young Won Lim
5/19/18

Non-planar graph examples

Planar Non-planar Non-planar Non-planar

contains K
3,3

contains K
3,3

contains a
subdivision of K

3,3

Planar Graph (7A) 15 Young Won Lim
5/19/18

Euler’s Formula

https://en.wikipedia.org/wiki/Planar_graph

Euler's formula states that if a finite, connected, planar
graph is drawn in the plane without any edge intersections,
and v is the number of vertices, e is the number of edges
and f is the number of faces (regions bounded by edges,
including the outer, infinitely large region), then

 v − e + f = 2

Planar Graph (7A) 16 Young Won Lim
5/19/18

Euler’s Formula

https://en.wikipedia.org/wiki/Planar_graph

In a finite, connected, simple, planar graph, any face (except
possibly the outer one) is bounded by at least three edges
and every edge touches at most two faces; using Euler's
formula, one can then show that these graphs are sparse in
the sense that if v ≥ 3:

 e ≤ 3 v − 6

Hamiltonian Cycles (3A) 17 Young Won Lim
5/19/18

Dual Graph

https://en.wikipedia.org/wiki/Hamiltonian_path

the dual graph of a plane graph G is a graph that
has a vertex for each face of G.

The dual graph has an edge whenever two
faces of G are separated from each other by an
edge,

and a self-loop when the same face appears on
both sides of an edge.

each edge e of G has a corresponding dual
edge, whose endpoints are the dual vertices
corresponding to the faces on either side of e.

Hamiltonian Cycles (3A) 18 Young Won Lim
5/19/18

Dual Graph

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

A

B

C

C

A B

~C (A + B)X

X

X

y

z

y

GND

z

Vdd

C

BA

Hamiltonian Cycles (3A) 19 Young Won Lim
5/19/18

Stick Layout

A B C A B C

Vcc

GND

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Hamiltonian Cycles (3A) 20 Young Won Lim
5/19/18

Stick Graph and Logic Diagram

A

B

C

C

A B

~C (A + B)X

y

z

A B C

Vcc

GND

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Hamiltonian Cycles (3A) 21 Young Won Lim
5/19/18

Stick Graph and Logic Diagram

A B C

Vcc

uninterrupted diffusion strip

X

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

X

X

y

GND

z

Vdd

consistent Euler paths (PUN & PDN)

C

BA

Young Won Lim
5/19/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/18/18

Graph Search (6A)

Young Won Lim
5/18/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Graph Search (6A) 3 Young Won Lim
5/18/18

Graph Traversal

https://en.wikipedia.org/wiki/Graph_traversal

graph traversal (graph search) refers to
the process of visiting (checking and/or updating)
each vertex in a graph.

Such traversals are classified
by the order in which the vertices are visited.

Tree traversal is a special case of graph traversal.

Graph Search (6A) 4 Young Won Lim
5/18/18

General Graph Search Algorithm

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Search(start, isGoal, criteria)
insert(Start, Open);
repeat
if (empty(Open)) then return fail;
select node from Open using Criteria;
mark node as visited;
if (isGoal(node)) then return node;

Graph Search (6A) 5 Young Won Lim
5/18/18

DFS

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Open – Stack
Criteria – pop

DFS(Start, isGoal)
push(Start, Open);
repeat

if (empty(Open)) then return fail;
node := pop(Open);
Mark node as visited;
if (isGoal(node)) then return node;
for each child of node do

if (child not already visited) then
push(child, Open);

Graph Search (6A) 6 Young Won Lim
5/18/18

BFS

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

Open – Stack
Criteria – dequeue

BFS(Start, isGoal)
enqueue(Start, Open);
repeat

if (empty(Open)) then return fail;
node := dequeue(Open);
mark node as visited;
if (isGoal(node)) then return node;
for each child of node do

if (child not already visited) then
enqueue(child, Open);

Graph Search (6A) 7 Young Won Lim
5/18/18

Algorithm Search

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows:
unmark all nodes in N;
mark node s;
pred(s) = 0; {that is, it has no predecessor}
LIST = {s}

while LIST ≠ ø do
select a node i in LIST;
if node i is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
add node j to the end of LIST;

else
delete node i from LIST

Graph Search (6A) 8 Young Won Lim
5/18/18

Algorithm Search

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows:
unmark all nodes in N;
mark node s;
pred(s) = 0; {that is, it has no predecessor}
LIST = {s}

while LIST ≠ ø do
select a node i in LIST;
if node i is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
add node j to the end of LIST;

else
delete node i from LIST

DFS : select the last node i in LIST;
BFS : select the first node i in LIST;

Graph Search (6A) 9 Young Won Lim
5/18/18

Algorithm Search

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Initialize as follows:
unmark all nodes in N;
mark node s;
pred(s) = 0; {that is, it has no predecessor}
LIST = {s}

while LIST ≠ ø do
select a node i in LIST;
if node i is incident to an admissible arc (i,j) then

mark node j;
pred(j) := i;
add node j to the end of LIST;

else
delete node i from LIST

DFS : select the last node i in LIST;

BFS : select the first node i in LIST;

Graph Search (6A) 10 Young Won Lim
5/18/18

Algorithm Search

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

pred(j) is a node that precedes j on some path from s;

A node is either marked or unmarked.
Initially only node s is marked.
If a node is marked, it is reachable from node s.
An arc (i,j) A is ∈ admissible
if node i is marked and j is not.

j

i

k

Graph Search (6A) 11 Young Won Lim
5/18/18

DFS

OPEN

x

1 2 3

3 2 1 x

CLOSED

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

Graph Search (6A) 12 Young Won Lim
5/18/18

BFS

y

ba

ba

OPEN

y

CLOSED

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

Graph Search (6A) 13 Young Won Lim
5/18/18

Expand Function

DFS (Depth First Search) BFS (Breadth First Search)

Stack Queue

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

Graph Search (6A) 14 Young Won Lim
5/18/18

DFS Pseudocode

https://en.wikipedia.org/wiki/Graph_traversal

1 procedure DFS(G, v):
2 label v as explored
3 for all edges e in G.incidentEdges(v) do
4 if edge e is unexplored then
5 w ← G.adjacentVertex(v, e)
6 if vertex w is unexplored then
7 label e as a discovered edge
8 recursively call DFS(G, w)
9 else
10 label e as a back edge

Graph Search (6A) 15 Young Won Lim
5/18/18

Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

Graph Search (6A) 16 Young Won Lim
5/18/18

Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cba cbbed cbbeeh

cbbeei cbbeef cbbeegbe

Graph Search (6A) 17 Young Won Lim
5/18/18

Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

cbbeegbe cbbeegc cbbeegg

cbbeeg

Graph Search (6A) 18 Young Won Lim
5/18/18

DFS

https://en.wikipedia.org/wiki/Graph_traversal

A depth-first search (DFS)
is an algorithm for traversing a finite graph.

DFS visits the child vertices
before visiting the sibling vertices;

that is, it traverses the depth of any particular path
before exploring its breadth.

A stack (often the program's call stack via recursion) is
generally used when implementing the algorithm.

Graph Search (6A) 19 Young Won Lim
5/18/18

DFS Backtrack

https://en.wikipedia.org/wiki/Graph_traversal

The algorithm begins with a chosen "root" vertex;

it then iteratively transitions from the current vertex to an
adjacent, unvisited vertex, until it can no longer find an
unexplored vertex to transition to from its current location.

The algorithm then backtracks along previously visited
vertices, until it finds a vertex connected to yet more
uncharted territory.

It will then proceed down the new path as it had before,
backtracking as it encounters dead-ends, and ending only
when the algorithm has backtracked past the original "root"
vertex from the very first step.

Graph Search (6A) 20 Young Won Lim
5/18/18

Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

Graph Search (6A) 21 Young Won Lim
5/18/18

Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

abc bcde cdef

defg efgh fghf

Graph Search (6A) 22 Young Won Lim
5/18/18

Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

a

d h

ie

fb

gc

s

ghfig hfig figi

gi

Graph Search (6A) 23 Young Won Lim
5/18/18

BFS

https://en.wikipedia.org/wiki/Graph_traversal

A breadth-first search (BFS) is another technique for
traversing a finite graph.

BFS visits the neighbor vertices before visiting the child
vertices

a queue is used in the search process

This algorithm is often used to find the shortest path from
one vertex to another.

Graph Search (6A) 24 Young Won Lim
5/18/18

BFS Pseudocode

https://en.wikipedia.org/wiki/Graph_traversal

1 procedure BFS(G, v):
2 create a queue Q
3 enqueue v onto Q
4 mark v
5 while Q is not empty:
6 t ← Q.dequeue()
7 if t is what we are looking for:
8 return t
9 for all edges e in G.adjacentEdges(t) do
12 o ← G.adjacentVertex(t, e)
13 if o is not marked:
14 mark o
15 enqueue o onto Q
16 return null

Young Won Lim
5/18/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/17/18

Binary Search Tree (2A)

Young Won Lim
5/17/18

 Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Binary Search Tree (2A) 3 Young Won Lim
5/17/18

Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_tree

Bnary search trees (BST),
ordered binary trees
sorted binary trees

are a particular type of container:
data structures that store "items"
(such as numbers, names etc.) in memory.

They allow fast lookup, addition and removal of items
can be used to implement either dynamic sets of items
lookup tables that allow finding an item by its key
(e.g., finding the phone number of a person by name).

Binary Search Tree (2A) 4 Young Won Lim
5/17/18

Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order
lookup operations can use the principle of binary search

when looking for a key in a tree
or looking for a place to insert a new key,
they traverse the tree from root to leaf,
making comparisons to keys stored in the nodes
Deciding to continue in the left or right subtrees,
on the basis of the comparison.

allowing to skip searching half of the tree
each operation (lookup, insertion or deletion)
takes time proportional to log n

much better than the linear time
but slower than the corresponding operations on hash
tables.

Binary Search Tree (2A) 5 Young Won Lim
5/17/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

3 < 8 < 10

1 < 3 < 6 10 < 14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (2A) 6 Young Won Lim
5/17/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (2A) 7 Young Won Lim
5/17/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (2A) 8 Young Won Lim
5/17/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (2A) 9 Young Won Lim
5/17/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (2A) 10 Young Won Lim
5/17/18

Infix, Prefix, Postfix Notations

6

3

41

8

107

13

14 1

6

74

13

1410

3

8

4

3

1

6

14

7

10

8 13

1, 3, 4, 6, 7, 8, 10, 13, 14 1, 3, 4, 6, 7, 8, 10, 13, 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (2A) 11 Young Won Lim
5/17/18

Infix, Prefix, Postfix Notations

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14

4

6

7

8

10

13

14

13

14

10

8

7

6

4

3

1

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (2A) 12 Young Won Lim
5/17/18

Binary Search

https://en.wikipedia.org/wiki/Binary_search_algorithm

Binary Search Tree (2A) 13 Young Won Lim
5/17/18

Insertion

https://en.wikipedia.org/wiki/Morphism

Insertion begins as a search would begin; if the key is not equal to that of the
root, we search the left or right subtrees as before. Eventually, we will reach
an external node and add the new key-value pair (here encoded as a record
'newNode') as its right or left child, depending on the node's key. In other
words, we examine the root and recursively insert the new node to the left
subtree if its key is less than that of the root, or the right subtree if its key is
greater than or equal to the root.

Binary Search Tree (2A) 14 Young Won Lim
5/17/18

Deletion

https://en.wikipedia.org/wiki/Morphism

1. Deleting a node with no children:
simply remove the node from the tree.

2. Deleting a node with one child:
remove the node and replace it with its child.

3. Deleting a node with two children:
call the node to be deleted D.
Do not delete D.
Instead, choose either its in-order predecessor node
or its in-order successor node as replacement node E.
Copy the user values of E to D
If E does not have a child

simply remove E from its previous parent G.
If E has a child, say F, it is a right child.

Replace E with F at E's parent.

Binary Search Tree (2A) 15 Young Won Lim
5/17/18

Deletion

https://en.wikipedia.org/wiki/Morphism

Young Won Lim
5/17/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/15/18

Binary Search Tree (2A)

Young Won Lim
5/15/18

 Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Binary Search Tree (2A) 3 Young Won Lim
5/15/18

Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_tree

Bnary search trees (BST),
ordered binary trees
sorted binary trees

are a particular type of container:
data structures that store "items"
(such as numbers, names etc.) in memory.

They allow fast lookup, addition and removal of items
can be used to implement either dynamic sets of items
lookup tables that allow finding an item by its key
(e.g., finding the phone number of a person by name).

Binary Search Tree (2A) 4 Young Won Lim
5/15/18

Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_tree

keep their keys in sorted order
lookup operations can use the principle of binary search

when looking for a key in a tree
or looking for a place to insert a new key,
they traverse the tree from root to leaf,
making comparisons to keys stored in the nodes
Deciding to continue in the left or right subtrees,
on the basis of the comparison.

allowing to skip searching half of the tree
each operation (lookup, insertion or deletion)
takes time proportional to log n

much better than the linear time
but slower than the corresponding operations on hash
tables.

Binary Search Tree (2A) 5 Young Won Lim
5/15/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

3 < 8 < 10

1 < 3 < 6 10 < 14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (2A) 6 Young Won Lim
5/15/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (2A) 7 Young Won Lim
5/15/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

1,3, 4,6,7 < 8 < 10,13,14

1 < 3 < 4, 6,7 10 < 13,14

4 < 6 < 7 13 < 14

1, 3, 4, 6, 7, 8, 10, 13, 14

Binary Search Tree (2A) 8 Young Won Lim
5/15/18

Binary Search

https://en.wikipedia.org/wiki/Binary_search_algorithm

Binary Search Tree (2A) 9 Young Won Lim
5/15/18

Insertion

https://en.wikipedia.org/wiki/Morphism

Insertion begins as a search would begin; if the key is not equal to that of the
root, we search the left or right subtrees as before. Eventually, we will reach
an external node and add the new key-value pair (here encoded as a record
'newNode') as its right or left child, depending on the node's key. In other
words, we examine the root and recursively insert the new node to the left
subtree if its key is less than that of the root, or the right subtree if its key is
greater than or equal to the root.

Binary Search Tree (2A) 10 Young Won Lim
5/15/18

Deletion

https://en.wikipedia.org/wiki/Morphism

1. Deleting a node with no children:
simply remove the node from the tree.

2. Deleting a node with one child:
remove the node and replace it with its child.

3. Deleting a node with two children:
call the node to be deleted D.
Do not delete D.
Instead, choose either its in-order predecessor node
or its in-order successor node as replacement node E.
Copy the user values of E to D
If E does not have a child

simply remove E from its previous parent G.
If E has a child, say F, it is a right child.

Replace E with F at E's parent.

Binary Search Tree (2A) 11 Young Won Lim
5/15/18

Deletion

https://en.wikipedia.org/wiki/Morphism

Young Won Lim
5/15/18

References

[1] http://en.wikipedia.org/
[2]

