
Young Won Lim
5/11/18

Graph Overview (1A)

Young Won Lim
5/11/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Graph Overview (1A) 25 Young Won Lim
5/11/18

Simple Graph

https://en.wikipedia.org/wiki/Travelling_salesman_problem

A simple graph is an undirected graph
without multiple edges or loops.

the edges form a set (rather than a multiset)
each edge is an unordered pair of distinct vertices.

can define a simple graph to be a set V of vertices
together with a set E of edges,

E are 2-element subsets of V

with n vertices,
the degree of every vertex is at most n − 1

K

J

G

H

F

B

E

D

A

C I

Graph Overview (1A) 26 Young Won Lim
5/11/18

Multi-Graph

https://en.wikipedia.org/wiki/Travelling_salesman_problem

A multigraph, as opposed to a simple graph, is an
undirected graph in which multiple edges (and
sometimes loops) are allowed.

B

E D

A

C

B

E

DA C

F

A B C

D

E F
G

H

Graph Overview (1A) 27 Young Won Lim
5/11/18

Multiple Edges

https://en.wikipedia.org/wiki/Travelling_salesman_problem

● multiple edges
● parallel edges
● Multi-edges

are two or more edges
that are incident to the same two vertices

A simple graph has no multiple edges.

Graph Overview (1A) 28 Young Won Lim
5/11/18

Loop

https://en.wikipedia.org/wiki/Travelling_salesman_problem

● a loop
● a self-loop
● a buckle

is an edge that connects a vertex to itself.

A simple graph contains no loops.

Graph Overview (1A) 29 Young Won Lim
5/11/18

Walks

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

For a graph G= (V, E), a walk is defined as a sequence

of alternating vertices and edges such as

where each edge

The length of this walk is

Edges are allowed to be repeated

v0, e1, v1, e2, ⋯ , ek , vk

ei = {vi−1 , v i}

k
v

0

e
1

v
1

e
2

v
2

e
3

v
3

ek

vk

⋯

B

E D

A

C
ABCDE

ABCDCBE

ei=e j for some i , j

Graph Overview (1A) 31 Young Won Lim
5/11/18

Open / Closed Walks

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A walk is considered to be closed if the starting vertex is
the same as the ending vertex.

Otherwise open

v
0

e
1

v
1

e
2

v
2

e
3

v
3

ek

vk = v
0

⋯

B

E D

A

C

ABCDE

ABCDCBE

ABCDAclosed walk

open walk

open walk

Graph Overview (1A) 32 Young Won Lim
5/11/18

Trails

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A trail is defined as a walk with no repeated edges.

B

E D

A

C

ABCDE

ABCDCBE

ABCDAclosed walk

open walk

open walk

v
0

e1

v
1

e2

v
2

e3

v
3

ek

vk

⋯

ei ≠ e j for all i , j

closed trail

open trail

open trail

Graph Overview (1A) 33 Young Won Lim
5/11/18

Paths

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A path is defined as a open trail with no repeated vertices.

B

E D

A

C

ABCDE

ABCDCBE

ABCDAclosed walk

open walk

open walk

v
0

e1

v
1

e2

v
2

e3

v
3

ek

vk ≠ v
0

⋯

ei ≠ e j for all i , j

closed trail

open trail

open trail

vi ≠ v j for all i , j

path

path

path

BEDABCopen walkopen trailpath

Graph Overview (1A) 34 Young Won Lim
5/11/18

Cycles

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A cycle is defined as a closed trail with no repeated
vertices except the start/end vertex

B

E D

A

C

ABCDAclosed walk

v
0

e1

v
1

e2

v
2

e3

v
3

ek

vk = v
0

⋯

ei ≠ e j for all i , j

circuit

vi ≠ v j for all i , j

cycle

ABCDEBDAclosed walkcircuitcycle

Graph Overview (1A) 35 Young Won Lim
5/11/18

Circuits

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A circuit is defined as a closed trail with possibly repeated
vertices but with no repeated edges

v
0

e1

v
1

e2

v
2

e3

v
3

ek

vk = v
0

⋯

ei ≠ e j for all i , j

vi = v j for some i , j

B

E D

A

C

ABCDAclosed walkcircuit

ABCDEBDAclosed walkcircuit

Graph Overview (1A) 36 Young Won Lim
5/11/18

Walk, Trail, Path, Circuit, Cycle

open walks closed walks

trails circuits

path cycle

ei ≠ e j ei ≠ e j

vi ≠ v j vi ≠ v j

v
0
≠ vk v

0
= vk

Graph Overview (1A) 37 Young Won Lim
5/11/18

Walk, Trail, Path, Circuit, Cycle

Vertices Edges

 Walk may may (Closed/Open)
 repeat repeat

 Trail may cannot (Open)
 repeat repeat

 Path cannot cannot (Open)
repeat repeat

 Circuit may cannot (Closed)
 repeat repeat

 Cycle cannot cannot (Closed)
 repeat repeat

https://math.stackexchange.com/questions/655589/what-is-difference-between-cycle-path-and-circuit-in-graph-theory

Young Won Lim
5/11/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/11/18

Eulerian Cycle (2A)

Young Won Lim
5/11/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Eulerian Cycles (2A) 3 Young Won Lim
5/11/18

Path and Trail

https://en.wikipedia.org/wiki/Eulerian_path

A path is a trail in which all vertices are distinct.
(except possibly the first and last)

A trail is a walk in which all edges are distinct.

Vertices Edges

 Walk may may (Closed/Open)

repeat repeat

 Trail may cannot (Open)

 repeat repeat

 Path cannot cannot (Open)

 repeat repeat

 Circuit may cannot (Closed)

 repeat repeat

Cycle cannot cannot (Closed)

 repeat repeat

Eulerian Cycles (2A) 4 Young Won Lim
5/11/18

Simple Paths and Cycles

https://en.wikipedia.org/wiki/Eulerian_path

Most literatures require that all of the edges and vertices of a
path be distinct from one another.

But, some do not require this and instead use the term simple
path to refer to a path which contains no repeated vertices.

A simple cycle may be defined as a closed walk with no
repetitions of vertices and edges allowed, other than the
repetition of the starting and ending vertex

There is considerable variation of terminology!!!
Make sure which set of definitions are used...

Eulerian Cycles (2A) 5 Young Won Lim
5/11/18

Simple Paths and Cycles

path cycle

simple
path

simple
cycle

trail circuit

path cycle

Eulerian Cycles (2A) 6 Young Won Lim
5/11/18

Paths and Cycles

v0, e1, v1, e2, ⋯ , ek , vk

v0

e
1

v1

e
2

v2

e
3

v3

ek

vk

⋯

v0, e1, v1, e2, ⋯ , ek , vk (v0 = vk)

path

cycle

v0, e1, v1, e2, ⋯ , ek , vk

v0, e1, v1, e2, ⋯ , ek , vk (v0 = vk)

path

cycle

(v0 ≠ vk)

path

cycle

cyclepath

Eulerian Cycles (2A) 7 Young Won Lim
5/11/18

Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

Some people reserve the terms path and cycle
to mean non-self-intersecting path and cycle.

A (potentially) self-intersecting path is known
as a trail or an open walk;

and a (potentially) self-intersecting cycle,
a circuit or a closed walk.

This ambiguity can be avoided by using the terms
Eulerian trail and Eulerian circuit
when self-intersection is allowed

no repeating vertices

repeating vertices

repeating vertices

repeating vertices

Eulerian Cycles (2A) 8 Young Won Lim
5/11/18

Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

the existence of Eulerian cycles

all vertices in the graph have an even degree

connected graphs with all vertices of even degree h
ave an Eulerian cycles

Eulerian Cycles (2A) 9 Young Won Lim
5/11/18

Euler Path

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

the existence of Eulerian paths

all the vertices in the graph have an even degree

except only two vertices with an odd degree

An Eulerian path starts and ends at different vertices
An Eulerian cycle starts and ends at the same vertex.

Eulerian Cycles (2A) 10 Young Won Lim
5/11/18

Conditions for Eulerian Cycles and Paths

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

An odd vertex = a vertex with an odd degree

An even vertex = a vertex with an even degree

of odd vertices Eulerian Path Eulerian Cycle

0 No Yes

2 Yes No

4,6,8, … No No

1,3,5,7, … No such graph No such graph

If the graph is connected

Eulerian Cycles (2A) 11 Young Won Lim
5/11/18

The number of odd vertices

of odd vertices Eulerian Path Eulerian Cycle

0 No Yes

2 Yes No

No Eulerian Path No Eulerian Cycle

Eulerian Cycle Eulerian Path

of odd vertices
= 0

of odd vertices
= 2

Eulerian Cycles (2A) 12 Young Won Lim
5/11/18

Eulerian Graph

Eulerian graph :
a graph with an Eulerian cycle
a graph with every vertex of even degree
(the number of odd vertices is 0)

These definitions coincide for connected graphs.

4 4

4

2

4

4

B

E D

A

C

B

E D

A

C

2 6

4

4
2

2 4

4
2

Eulerian Cycles (2A) 13 Young Won Lim
5/11/18

Odd Degree and Even Degree

https://en.wikipedia.org/wiki/Eulerian_path

3

3

3

5

4 4

4

2

4

4

All odd degree vertices

All even degree vertices

Eulerian Cycles (2A) 14 Young Won Lim
5/11/18

Euler Cycle Example

en.wikipedia.org

ABCDEFGHIJK

K

J

G

H

F

B

E

D

A

C I

a path denoted by
the edge names

All even degree vertices

Eulerian Cycles

K

J

G

H

F

B

E

D

A

C I

Eulerian Cycles (2A) 15 Young Won Lim
5/11/18

Euler Cycle Example

en.wikipedia.org

ABCDEFGHIJK

K

J

G

H

F

B

E

D

A

C I

K

J

G

H

F

B

E

D

A

C I

K

J

G

H

F

B

E

D

A

C I

K

J

G

H

F

B

E

D

A

C I

K

J

G

H

F

B

E

D

A

C I

K

J

G

H

F

B

E

D

A

C I

K

J

G

H

F

B

E

D

A

C I

K

J

G

H

F

B

E

D

A

C I

K

J

G

H

F

B

E

D

A

C I

K

J

G

H

F

B

E

D

A

C I

K

J

G

H

F

B

E

D

A

C I

K

J

G

H

F

B

E

D

A

C I

Eulerian Cycles (2A) 16 Young Won Lim
5/11/18

Euler Path and Cycle Examples

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

B

E D

A

C

Eulerian Path
1. BBADCDEBC
2. CDCBBADEB

B

E D

A

C

Euerian Cycle
1. CDCBBADEBC

B

E D

A

C

Euerian Cycle
2. CDEBBADC

a path denoted by
the vertex names

2 5

3

4
2

2 6

4

4
2

2 4

1

4
2

Eulerian Cycles (2A) 17 Young Won Lim
5/11/18

Eulerian Cycles of Undirected Graphs

https://en.wikipedia.org/wiki/Eulerian_path

An undirected graph has an Eulerian cycle
if and only if every vertex has even degree,
and all of its vertices with nonzero degree
belong to a single connected component.

An undirected graph can be
decomposed into edge-disjoint cycles
if and only if all of its vertices have even degree.

So, a graph has an Eulerian cycle
if and only if it can be decomposed
into edge-disjoint cycles
and its nonzero-degree vertices
belong to a single connected component.

4 4

4

2

4

4

Eulerian Cycles (2A) 18 Young Won Lim
5/11/18

Edge Disjoint Cycle Decomposition

K

J

G

H

F

B

E

D

A

C I

All even
vertices

Euerian
Cycle

Edge Disjoint
Cycles

Eulerian Cycles (2A) 19 Young Won Lim
5/11/18

Eulerian Paths of Undirected Graphs

https://en.wikipedia.org/wiki/Eulerian_path

An undirected graph has an Eulerian trail
if and only if exactly zero or two vertices have odd degree,
and all of its vertices with nonzero degree
belong to a single connected component.

Eulerian Cycles (2A) 20 Young Won Lim
5/11/18

Eulerian Cycles of DiGraphs

https://en.wikipedia.org/wiki/Eulerian_path

A directed graph has an Eulerian cycle
if and only if every vertex has equal in degree and out degree,
and all of its vertices with nonzero degree
belong to a single strongly connected component.

Equivalently, a directed graph has an Eulerian cycle
if and only if it can be decomposed
into edge-disjoint directed cycles
and all of its vertices with nonzero degree
belong to a single strongly connected component.

Eulerian Cycles (2A) 21 Young Won Lim
5/11/18

Eulerian Paths of DiGraphs

https://en.wikipedia.org/wiki/Eulerian_path

A directed graph has an Eulerian path
if and only if at most one vertex has (out-degree) − (in-degree) = 1,
at most one vertex has (in-degree) − (out-degree) = 1,
every other vertex has equal in-degree and out-degree,
and all of its vertices with nonzero degree belong to a single connected
component of the underlying undirected graph.

Eulerian Cycles (2A) 22 Young Won Lim
5/11/18

Seven Bridges of Königsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

The problem was to devise a walk through the city that
would cross each of those bridges once and only once.

Eulerian Cycles (2A) 23 Young Won Lim
5/11/18

Seven and Eight Bridges Problems

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

3

5 3

3

5

4

4

Eulerian Path

A B CA

D

E FE G

H

AEHGFDCB

7 bridges problem 8 bridges problem

A B CA

D

E FE

Eulerian Cycles (2A) 24 Young Won Lim
5/11/18

Nine and Ten Bridges Problems

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

4

5

5

4

4

6

6

4

Eulerian CycleEulerian Path

A B CA

D

E FE G

A B CA

D

E FE G

HH

I
I

J

EHGFDCBAI AEHGFDCBJI

9 bridges problem 10 bridges problem

Eulerian Cycles (2A) 25 Young Won Lim
5/11/18

8 bridges – Eulerian Path

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Eulerian Path

AEHGFDCB

A B C

D

E F
G

H

A B C

D

E F
G

H

A B C

D

E F
G

H

A B C

D

E F
G

H

A B C

D

E F
G

H

A B C

D

E F
G

H

A B C

D

E F
G

H

A B C

D

E F
G

H

A B C

D

E F
G

H

Eulerian Cycles (2A) 26 Young Won Lim
5/11/18

9 bridges – Eulerian Path

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

A B C

D

E F
G

H

Eulerian Path

EHGFDCBAI

I

A B C

D

E F
G

H

I

A B C

D

E F
G

H

I

A B C

D

E F
G

H

I

A B C

D

E F
G

H

I

A B C

D

E F
G

H

I

A B C

D

E F
G

H

I

A B C

D

E F
G

H

I

A B C

D

E F
G

H

I

A B C

D

E F
G

H

I

Eulerian Cycles (2A) 27 Young Won Lim
5/11/18

10 bridges – Eulerian Cycle

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

A B C

D

E F
G

H

I

J

Eulerian Cycle

AEHGFDCBJI

A B C

D

E F
G

H

I

J

A B C

D

E F
G

H

I

J

A B C

D

E F
G

H

I

J

A B C

D

E F
G

H

I

J

A B C

D

E F
G

H

I

J

A B C

D

E F
G

H

I

J

A B C

D

E F
G

H

I

J

A B C

D

E F
G

H

I

J

A B C

D

E F
G

H

I

J

A B C

D

E F
G

H

I

J

Eulerian Cycles (2A) 28 Young Won Lim
5/11/18

Fleury’s Algorithm

To find an Eulerian path or an Eulerian cycle:

1. make sure the graph has either 0 or 2 odd vertices

2. if there are 0 odd vertex, start anywhere.
If there are 2 odd vertices, start at one of the two vertices

3. follow edges one at a time.
If you have a choice between a bridge and a non-bridge,
Always choose the non-bridge

4. stop when you run out of edge

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

Eulerian Cycles (2A) 29 Young Won Lim
5/11/18

Bridges

A bridge edge

Removing a single edge from a connected graph

can make it disconnected

Non-bridge edges

Loops cannot be bridges

Multiple edges cannot be bridges

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

Eulerian Cycles (2A) 30 Young Won Lim
5/11/18

Bridge examples in a graph

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

Eulerian Cycles (2A) 31 Young Won Lim
5/11/18

Bridges must be avoided, if possible

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

B

E

DA C

F

FEACB

B

DA C

F

bridge

B

DA C

F

If there exists other choice other than a bridge

The bridge must not be chosen.

B

DA C

F

bridge

Eulerian Cycles (2A) 32 Young Won Lim
5/11/18

Fleury’s Algorithm (1)

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

B

E

DA C

F

B

E

DA C

F

B

E

DA C

F

B

E

DA C

F

FE FEA FEAC

B

E

DA C

F

FEACB

Eulerian Cycles (2A) 33 Young Won Lim
5/11/18

Fleury’s Algorithm (2)

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

B

E

DA C

F

FEACB

B

E

DA C

F

FEACBD

BA :bridge DB : bridge

B

E

DA C

F

FEACBDC

CF :bridge

BD : chosen DC : chosen CF :chosen

no other choice

B

E

DA C

F

FEACBDCF

FD : bridge

FD : chosen

no other choice

Eulerian Cycles (2A) 34 Young Won Lim
5/11/18

Fleury’s Algorithm (3)

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

B

E

DA C

F

FEACBDCFD

DB : bridge

DB : chosen

no other choice

B

E

DA C

F

FEACBDCFDB

BA : bridge

BA : chosen

no other choice

B

E

DA C

F

Young Won Lim
5/11/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/11/18

Hamiltonian Cycle (3A)

Young Won Lim
5/11/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Hamiltonian Cycles (3A) 3 Young Won Lim
5/11/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path

A Hamiltonian path is a path
in an undirected or directed graph
that visits each vertex exactly once.

A Hamiltonian cycle is
a Hamiltonian path that is a cycle.

the Hamiltonian path problem is NP-complete.

Hamiltonian Cycles (3A) 4 Young Won Lim
5/11/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 5 Young Won Lim
5/11/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 6 Young Won Lim
5/11/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path

● a complete graph with more than two vertices is Hamiltonian
● every cycle graph is Hamiltonian
● every tournament has an odd number of Hamiltonian paths
● every platonic solid, considered as a graph, is Hamiltonian
● the Cayley graph of a finite Coxeter group is Hamiltonian

Hamiltonian Cycles (3A) 7 Young Won Lim
5/11/18

Complete Graphs and Cycle Graphs

https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Cycle_graph

Hamiltonian Cycles (3A) 8 Young Won Lim
5/11/18

Complete Graphs

https://en.wikipedia.org/wiki/Complete_graph

Hamiltonian Cycles (3A) 9 Young Won Lim
5/11/18

Tournament Graphs

https://en.wikipedia.org/wiki/Tournament_(graph_theory

Hamiltonian Cycles (3A) 10 Young Won Lim
5/11/18

Platonic Solid Graphs

https://en.wikipedia.org/wiki/Platonic_solid

Hamiltonian Cycles (3A) 11 Young Won Lim
5/11/18

Hamiltonian Cycles – Properties (1)

https://en.wikipedia.org/wiki/Hamiltonian_path

Any Hamiltonian cycle can be converted
to a Hamiltonian path by removing one of its edges,

but a Hamiltonian path can be extended to
Hamiltonian cycle only if its endpoints are adjacent.

All Hamiltonian graphs are biconnected, but a
biconnected graph need not be Hamiltonian

Hamiltonian Cycles (3A) 12 Young Won Lim
5/11/18

Biconnected Graph

https://en.wikipedia.org/wiki/Biconnected_graph

a biconnected graph is a connected and "nonseparable"
graph, meaning that if any one vertex were to be
removed, the graph will remain connected.

a biconnected graph has no articulation vertices.

The property of being 2-connected is equivalent to
biconnectivity, with the caveat that the complete graph
of two vertices is sometimes regarded as biconnected
but not 2-connected.

Hamiltonian Cycles (3A) 13 Young Won Lim
5/11/18

Biconnected Graph Examples

https://en.wikipedia.org/wiki/Biconnected_graph

Hamiltonian Cycles (3A) 14 Young Won Lim
5/11/18

Eulerian Graph

An Eulerian graph G :
a connected graph in which
every vertex has even degree

An Eulerian graph G necessarily has an Euler cycle,
a closed walk passing through each edge of G exactly once.

4 4

4

2

4

4

B

E
D

A

C

B

E
D

A

C

2 6

4

4
2

2 4

4
2

Hamiltonian Cycles (3A) 15 Young Won Lim
5/11/18

Eulerian Graph (1)

B

D E

A

C

Eulerian Cycle
ABCDECA

4

2

3

1

6

5

B

D E

A

C

4

2

3

1

6

5 3

6 2

5

4

1

G L(G)

Hamiltonian Cycle
1-2-3-4-5-6-1

The Eulerian cycle corresponds to a Hamiltonian cycle in
the line graph L(G), so the line graph of every Eulerian
graph is Hamiltonian graph.

Hamiltonian Cycles (3A) 16 Young Won Lim
5/11/18

Eulerian Graph (2)

B

D E

A

C

Eulerian Cycle
ABCEDCA

4

2

3

1

6

5

B

D E

A

C

4

2

3

1

6

5 3

6 2

5

4

1

G L(G)

Hamiltonian Cycle
1-2-5-4-3-6-1

The Eulerian cycle corresponds to a Hamiltonian cycle in
the line graph L(G), so the line graph of every Eulerian
graph is Hamiltonian graph.

Hamiltonian Cycles (3A) 17 Young Won Lim
5/11/18

Eulerian Path (1)

G L(G)

1

5

24 3

1

5

24 3

Eulerian Path
ABCADC

Hamiltonian Path
1-2-3-4-5

B

D C

A
1

234

5

The Eulerian path corresponds to a Hamiltonian path in the
line graph L(G)

Hamiltonian Cycles (3A) 18 Young Won Lim
5/11/18

Eulerian Path (2)

Eulerian Path
FEACBDCFDBA

G L(G)

Hamiltonian Path
1-2-3-4-5-6-7-8-9-10

Line graphs may have other Hamiltonian cycles that do not
correspond to Euler cycles.

B

E

DA C

F

1

2

3

4 5

6

7 8

9

10

1

2

3

5

6

4

7

8

910

Hamiltonian Cycles (3A) 19 Young Won Lim
5/11/18

Eulerian Path (3)

Eulerian Cycle X
Eulerian Path X

G L(G)

Hamiltonian Cycle
1-7-3-6-8-5-4-9-10-2-1

Line graphs may have other Hamiltonian cycles that do not
correspond to Euler cycles.

B

E

DA C

F

1

2

3

4 5

6

7 8

9

10

1

2

3

5

6

4

7

8

910

not always

Hamiltonian Cycles (3A) 20 Young Won Lim
5/11/18

Hamiltonian Cycles – Properties (2)

https://en.wikipedia.org/wiki/Hamiltonian_path

This Eulerian cycle corresponds to a Hamiltonian cycle in
the line graph L(G), so the line graph of every Eulerian
graph is Hamiltonian graph.

Line graphs may have other Hamiltonian cycles that do not
correspond to Euler paths.

The line graph L(G) of every Hamiltonian graph G is itself
Hamiltonian, regardless of whether the graph G is Eulerian.

Hamiltonian Cycles (3A) 21 Young Won Lim
5/11/18

Line Graphs

https://en.wikipedia.org/wiki/Line_graph

In the mathematical discipline of graph theory, the line graph
of an undirected graph G is another graph L(G) that
represents the adjacencies between edges of G.

Given a graph G, its line graph L(G) is a graph such that

● each vertex of L(G) represents an edge of G; and
● two vertices of L(G) are adjacent if and only if their

corresponding edges share a common endpoint ("are
incident") in G.

That is, it is the intersection graph of the edges of G,
representing each edge by the set of its two endpoints.

Hamiltonian Cycles (3A) 22 Young Won Lim
5/11/18

Line Graphs Examples

https://en.wikipedia.org/wiki/Line_graph

Hamiltonian Cycles (3A) 23 Young Won Lim
5/11/18

Hamiltonian Cycles – Properties (3)

https://en.wikipedia.org/wiki/Hamiltonian_path

A tournament (with more than two vertices) is Hamiltonian if and
only if it is strongly connected.

The number of different Hamiltonian cycles
in a complete undirected graph on n vertices is (n − 1)! / 2
in a complete directed graph on n vertices is (n − 1)!.

These counts assume that cycles that are the same apart from
their starting point are not counted separately.

Hamiltonian Cycles (3A) 24 Young Won Lim
5/11/18

Strongly Connected Component

https://en.wikipedia.org/wiki/Hamiltonian_path

a directed graph is said to be strongly connected or
diconnected if every vertex is reachable from every other vertex.

The strongly connected components or diconnected
components of an arbitrary directed graph form a partition into
subgraphs that are themselves strongly connected.

Hamiltonian Cycles (3A) 25 Young Won Lim
5/11/18

Dual Graph

https://en.wikipedia.org/wiki/Hamiltonian_path

 the dual graph of a plane graph G is a graph
that has a vertex for each face of G.

The dual graph has an edge whenever two
faces of G are separated from each other by an
edge,

and a self-loop when the same face appears on
both sides of an edge.

each edge e of G has a corresponding dual
edge, whose endpoints are the dual vertices
corresponding to the faces on either side of e.

Hamiltonian Cycles (3A) 26 Young Won Lim
5/11/18

Dual Graph

https://en.wikipedia.org/wiki/Hamiltonian_path

A

B

C

C

A B

~C (A + B)X

X

X

y

z

y

GND

z

Vdd

C

BA

Young Won Lim
5/11/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/11/18

Shortest Path Problem (4A)

Young Won Lim
5/11/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Shortest Path Problem (4A) 3 Young Won Lim
5/11/18

Shortest Path Problem

https://en.wikipedia.org/wiki/Shortest_path_problem

the shortest path problem is the problem of finding a path
between two vertices (or nodes) in a graph such that the
sum of the weights of its constituent edges is minimized.

Shortest Path Problem (4A) 4 Young Won Lim
5/11/18

Types of Shortest Path Problems

https://en.wikipedia.org/wiki/Shortest_path_problem

The single-pair shortest path problem:
to find shortest paths from a source vertex v to a
destination vertex w in a graph

The single-source shortest path problem:
to find shortest paths from a source vertex v to all other
vertices in the graph.

The single-destination shortest path problem:
to find shortest paths from all vertices in the directed
graph to a single destination vertex v. This can be
reduced to the single-source shortest path problem by
reversing the arcs in the directed graph.

The all-pairs shortest path problem:
to find shortest paths between every pair of vertices v, v'
in the graph.

Shortest Path Problem (4A) 5 Young Won Lim
5/11/18

Dijkstra’s Algorithm Example Summary

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

the current node

the initial node

the visited nodes

Shortest Path Problem (4A) 6 Young Won Lim
5/11/18

Dijkstra’s Algorithm Example (1)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 7 Young Won Lim
5/11/18

Dijkstra’s Algorithm Example (2)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 8 Young Won Lim
5/11/18

Dijkstra’s Algorithm Example (3)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 9 Young Won Lim
5/11/18

Dijkstra’s Algorithm Example (4)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 10 Young Won Lim
5/11/18

Dijkstra’s Algorithm Example (5)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 11 Young Won Lim
5/11/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 12 Young Won Lim
5/11/18

Dijkstra’s Algorithm (1)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Let the node at which we are starting
be called the initial node.
Let the distance of node Y be
the distance from the initial node to Y.
Dijkstra's algorithm will assign some initial distance
values and will try to improve them step by step.

1. Mark all nodes unvisited.
Create a set of all the unvisited nodes called the
unvisited set.

2. Assign to every node a tentative distance value:
set it to zero for our initial node and
to infinity for all other nodes.
Set the initial node as current.

Shortest Path Problem (4A) 13 Young Won Lim
5/11/18

Dijkstra’s Algorithm (2)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

3. Remove the current node from the unvisited set

For all the unvisited neighbors of the current node,
calculate their tentative distances
through the current node.

Compare the newly calculated tentative distance to the
current assigned value and assign the smaller one.

For example, if the current node A is marked with a
distance of 6, and the edge connecting it with a neighbor
B has length 2, then the distance to B through A will be 6
+ 2 = 8. If B was previously marked with a distance
greater than 8 then change it to 8. Otherwise, keep the
current value.

A

6 B2

8

I

Initial
node

current
node

an unvisited
neighbor

Newly calculated
tentative distance
through the current node

Shortest Path Problem (4A) 14 Young Won Lim
5/11/18

Dijkstra’s Algorithm (3)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

4. After considering all of the neighbors of the current
node, mark the current node as visited and remove it
from the unvisited set. A visited node will never be
checked again.

A

6 B2

8

I

Initial
node

current
node

C

D

3

4

9

10

current node : chosen
node with the smallest
tentative distance from
the unvisited set

current node : move to the
visited set, after calculating
the tentative distances of all
the neighbors of the current
node

consider all the neighbors of
the current node

Shortest Path Problem (4A) 15 Young Won Lim
5/11/18

Dijkstra’s Algorithm (4)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

5. Move to the next unvisited node with the smallest
tentative distances and repeat the above steps which
check neighbors and mark visited.

A

6 B2

8

I

Initial
node

current
node

C

D

3

4

9

10

E

7

E

8

Shortest Path Problem (4A) 16 Young Won Lim
5/11/18

Dijkstra’s Algorithm (5)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

5-a. If the destination node has been marked visited
(when planning a route between two specific nodes)

or if the smallest tentative distance among the nodes in
the unvisited set is infinity (when planning a complete
traversal; occurs when there is no connection between
the initial node and remaining unvisited nodes),

then stop. The algorithm has finished.

5-b. Otherwise, select the unvisited node that is marked
with the smallest tentative distance,
set it as the new current node, and go back to step 3.

Shortest Path Problem (4A) 17 Young Won Lim
5/11/18

Dijkstra’s Algorithm – Pseudocode 1

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph: // Initialization
 6 dist[v] ← INFINITY // Unknown distance from source to v
 7 prev[v] ← UNDEFINED // Previous node in optimal path from source
 8 add v to Q // All nodes initially in Q (unvisited nodes)
 9
10 dist[source] ← 0 // Distance from source to source
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u] // Node with the least distance
14 // will be selected first
15 remove u from Q
16
17 for each neighbor v of u: // where v is still in Q. for each v in Q:
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]: // A shorter path to v has been found
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

Shortest Path Problem (4A) 18 Young Won Lim
5/11/18

Dijkstra’s Algorithm – Pseudocode 2

Discrete Mathematics and It’s Applications, K. H. Rosen

Procedure Dijkstra(G: weighted connected simple graph, with all positive weights)

{G has vertices a = v
0
, v

1
, …, v

n
 = z and length w(v

i
, v

j
)

 where w(v
i
, v

j
) = ∞ if {v

i
, v

j
} is not an edge in G}

for i := 1 to n

L(v
i
) := ∞

L(a) := 0

S := { }

{the labels are now initialized so that the label of a is 0 and

All other labels are ∞, and S is the empty set}

while z S∉
u := a vertex not in S with L(u) minimal

S := S {∪ u}

for all vertices v not in S

if L(u) +w(u,v) < L(u) then L(v) := L(u) + w(u,v)

{this adds a vertex to S with minimal label and

updates the labels of vertices not in S}

return L(z) {L(z) = length of a shortest path from a to z}

Shortest Path Problem (4A) 19 Young Won Lim
5/11/18

Dijkstra Algorithm Pseudocode 2 Example (0)

Discrete Mathematics and It’s Applications, K. H. Rosen

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

∞ ∞

∞ ∞

∞ [
∞ 4 2 ∞ ∞ ∞
4 ∞ 1 5 ∞ ∞
2 1 ∞ 8 10 ∞
∞ 5 8 ∞ 2 6

∞ ∞ 10 8 ∞ 3

∞ ∞ ∞ 6 3 ∞
]

a

b

c

d

e

z

a b c d e z

w (ui ,u j)

Shortest Path Problem (4A) 20 Young Won Lim
5/11/18

Dijkstra Algorithm Pseudocode 2 Example (1)

Discrete Mathematics and It’s Applications, K. H. Rosen

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

∞ ∞

∞ ∞

∞
4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

∞ ∞

∞ ∞

∞
4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

4 ∞

2 ∞

∞

S={a}

L(a)+w (a ,b)=0+4 < L(b)=∞

L(a)+w (a ,c)=0+2 < L(c)=∞

L(a)+w (a ,d)=0+∞ = L(d)=∞

L(a)+w (a ,e)=0+∞ = L(e)=∞

L(a)+w (a , z)=0+∞ = L(z)=∞

Shortest Path Problem (4A) 21 Young Won Lim
5/11/18

Dijkstra Algorithm Pseudocode 2 Example (2)

Discrete Mathematics and It’s Applications, K. H. Rosen

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

4 ∞

2 ∞

∞

S={a, c}

L(c)+w (c ,b)=2+1 < L(b)=4

L(c)+w (c ,d)=2+8 < L(d)=∞

L(c)+w (c ,e)=2+10 < L(e)=∞

L(c)+w (c , z)=2+∞ = L(z)=∞

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

4 ∞

2 ∞

∞
4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 10

2 12

∞

P(a ,c , b) < P(a ,b)

Shortest Path Problem (4A) 22 Young Won Lim
5/11/18

Dijkstra Algorithm Pseudocode 2 Example (3)

Discrete Mathematics and It’s Applications, K. H. Rosen

S={a, c ,b}

L(b)+w (b ,d)=3+5 < L(d)=10

L(b)+w (b ,e)=3+∞ > L(e)=12

L(b)+w (b , z)=3+∞ = L(z)=∞

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 10

2 12

∞
4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 10

2 12

∞
4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 8

2 12

∞

P(a ,c , b , d) < P(a ,c , d)

Shortest Path Problem (4A) 23 Young Won Lim
5/11/18

Dijkstra Algorithm Pseudocode 2 Example (4)

Discrete Mathematics and It’s Applications, K. H. Rosen

S={a, c ,b ,d }

L(d)+w (d , e)=8+2 < L(e)=12

L(d)+w (d , z)=8+6 < L(z)=∞

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 8

2 12

∞
4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 8

2 12

∞
4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 8

2 10

14

P(a ,c , b , d , e) < P(a ,c , e)

Shortest Path Problem (4A) 24 Young Won Lim
5/11/18

Dijkstra Algorithm Pseudocode 2 Example (5)

Discrete Mathematics and It’s Applications, K. H. Rosen

S={a, c ,b ,d ,e}

L(e)+w(e , z)=10+3 < L(z)=14

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 8

2 10

14

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 8

2 10

14

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 8

2 10

13

P(a ,c , b , d , e , z) < P(a ,c , b , d , z)

Shortest Path Problem (4A) 25 Young Won Lim
5/11/18

Dijkstra Algorithm Pseudocode 2 Example (6)

Discrete Mathematics and It’s Applications, K. H. Rosen

S={a, c ,b ,d ,e , z}

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 8

2 10

13

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 8

2 10

13

4

e

d

za

c

b

2

1

5

8

10

6

3

2

0

3 8

2 10

13

Young Won Lim
5/11/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/11/18

Minimum Spanning Tree (5A)

Young Won Lim
5/11/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Minimum Spanning Tree (5A) 3 Young Won Lim
5/11/18

Minimum Spanning Tree

https://en.wikipedia.org/wiki/Minimum_spanning_tree

a subset of the edges of a connected, edge-weighted
(un)directed graph that connects all the vertices
together, without any cycles and with the minimum
possible total edge weight.

a spanning tree whose sum of edge weights is as small
as possible.

More generally, any edge-weighted undirected graph (not
necessarily connected) has a minimum spanning forest,
which is a union of the minimum spanning trees for its
connected components.

Minimum Spanning Tree (5A) 4 Young Won Lim
5/11/18

Types of Shortest Path Problems

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Minimum Spanning Tree (5A) 5 Young Won Lim
5/11/18

Properties (1)

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Possible multiplicity
If there are n vertices in the graph,
then each spanning tree has n−1 edges.

Uniquenss
If each edge has a distinct weight
then there will be only one, unique minimum spanning tree.
this is true in many realistic situations

Minimum-cost subgraph
If the weights are positive, then a minimum spanning tree is
in fact a minimum-cost subgraph connecting all vertices,
since subgraphs containing cycles necessarily have more
total weight.

Minimum Spanning Tree (5A) 6 Young Won Lim
5/11/18

Properties (2)

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Cycle Property
For any cycle C in the graph, if the weight of an edge e of C
is larger than the individual weights of all other edges of C,
then this edge cannot belong to a MST.

Cut property
For any cut C of the graph, if the weight of an edge e in the
cut-set of C is strictly smaller than the weights of all other
edges of the cut-set of C, then this edge belongs to all
MSTs of the graph.

Minimum Spanning Tree (5A) 7 Young Won Lim
5/11/18

Properties (3)

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Minimum-cost edge
If the minimum cost edge e of a graph is unique, then this
edge is included in any MST.

Contraction
If T is a tree of MST edges, then we can contract T into a
single vertex while maintaining the invariant that the MST of
the contracted graph plus T gives the MST for the graph
before contraction.

Minimum Spanning Tree (5A) 8 Young Won Lim
5/11/18

Cut property examples

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Minimum Spanning Tree (5A) 9 Young Won Lim
5/11/18

Borůvka's algorithm

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Input: A graph G whose edges have distinct weights
Initialize a forest F to be a set of one-vertex trees,
 one for each vertex of the graph.
While F has more than one component:
 Find the connected components of F and
 label each vertex of G by its component
 Initialize the cheapest edge for each component to "None"
 For each edge uv of G:
 If u and v have different component labels:
 If uv is cheaper than the cheapest edge

for the component of u:
 Set uv as the cheapest edge for the component of u
 If uv is cheaper than the cheapest edge
 for the component of v:
 Set uv as the cheapest edge for the component of v
 For each component whose cheapest edge
 is not "None":
 Add its cheapest edge to F
 Output: F is the minimum spanning forest of G.

Minimum Spanning Tree (5A) 10 Young Won Lim
5/11/18

Borůvka's algorithm examples (1)

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Minimum Spanning Tree (5A) 11 Young Won Lim
5/11/18

Borůvka's algorithm examples (2)

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Minimum Spanning Tree (5A) 12 Young Won Lim
5/11/18

Borůvka's algorithm examples (3)

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Minimum Spanning Tree (5A) 13 Young Won Lim
5/11/18

Borůvka's algorithm examples (4)

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/20-mst.pdf

8 5

10

2 3

18

12 30

16

14

4 26

18

12

14

26

Minimum Spanning Tree (5A) 14 Young Won Lim
5/11/18

Kruskal's algorithm

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

KRUSKAL(G):
1 A = ∅
2 foreach v G.V:∈
3 MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5 if FIND-SET(u) ≠ FIND-SET(v):
6 A = A {(u, v)}∪
7 UNION(u, v)
8 return A

Scan all edges in increasing weight order; if an edge is safe, add it to A

Minimum Spanning Tree (5A) 15 Young Won Lim
5/11/18

Kruskal's algorithm examples (1)

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}

Minimum Spanning Tree (5A) 16 Young Won Lim
5/11/18

Kruskal's algorithm examples (2)

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}

Minimum Spanning Tree (5A) 17 Young Won Lim
5/11/18

Kruskal's algorithm examples (3)

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}

{ 5, 5, 6, 7, 7, 8, 8, 9, 9, 11, 15}

Minimum Spanning Tree (5A) 18 Young Won Lim
5/11/18

Kruskal's algorithm examples (4)

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/20-mst.pdf

8 5

10

2 3

18
12 30

16

14

4 26

{2,3,4,5,8,10, 12,14,16, 18,26, 30}

8 5

3

18
12 30

16

14

4 26

8 5

18
12 30

16

14

4 26

5

18
12 30

16

14

26

12 30
16

26

16

Minimum Spanning Tree (5A) 19 Young Won Lim
5/11/18

Prim's algorithm

https://en.wikipedia.org/wiki/Prim%27s_algorithm

a greedy algorithm that finds a minimum spanning tree
for a weighted undirected graph.

operates by building this tree one vertex at a time,
from an arbitrary starting vertex,
at each step adding the cheapest possible connection
from the tree to another vertex.

Repeatedly add a safe edge to the tree

1. Initialize a tree with a single vertex,
chosen arbitrarily from the graph.

2. Grow the tree by one edge:
of the edges that connect the tree to vertices
not yet in the tree, find the minimum-weight edge,
and transfer it to the tree.

3. Repeat step 2 (until all vertices are in the tree).

Minimum Spanning Tree (5A) 20 Young Won Lim
5/11/18

Prim's algorithm

https://en.wikipedia.org/wiki/Prim%27s_algorithm

1. Associate with each vertex v of the graph
a number C[v] (the cheapest cost of a connection to v)
and an edge E[v] (the cheapest edge).
Initial values: C[v] = +∞, E[v] = flag for no connection

2. Initialize an empty forest F and a set Q of vertices
that have not yet been included in F

3. Repeat the following steps until Q is empty:
 a. Find and remove a vertex v from Q

having the minimum possible value of C[v]
 b. Add v to F and, if E[v] is not the special flag value,

 also add E[v] to F
 c. Loop over the edges vw connecting v to other
 vertices w. For each such edge, if w still belongs to Q
 and vw has smaller weight than C[w],

 perform the following steps:
 I) Set C[w] to the cost of edge vw
 II) Set E[w] to point to edge vw.
 Return F

Minimum Spanning Tree (5A) 21 Young Won Lim
5/11/18

Prim's algorithm

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

Prim's algorithm starting at vertex A.
In the third step, edges BD and AB both have weight 2,
so BD is chosen arbitrarily.
After that step, AB is no longer a candidate for addition to
the tree because it links two nodes
that are already in the tree.

Minimum Spanning Tree (5A) 22 Young Won Lim
5/11/18

Prim's algorithm examples (1)

https://es.wikipedia.org/wiki/Algoritmo_de_Prim

{5,6, 9,15}

Minimum Spanning Tree (5A) 23 Young Won Lim
5/11/18

Prim's algorithm examples (2)

https://es.wikipedia.org/wiki/Algoritmo_de_Prim

Minimum Spanning Tree (5A) 24 Young Won Lim
5/11/18

Prim's algorithm examples (3)

https://es.wikipedia.org/wiki/Algoritmo_de_Prim

Minimum Spanning Tree (5A) 25 Young Won Lim
5/11/18

Prim's algorithm examples (4)

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/20-mst.pdf

8 5

10

2 3

18
12 30

16

14

4 26

{2,3,4,5,8,10, 12,14,16, 18,26, 30}

8 5

10

2 3

18
12 30

16

14

4 26

8 5

10

2 3

18
12 30

16

14

4 26

8 5

10

2 3

18
12 30

16

14

4 26

8 5

10

2 3

18
12 30

16

14

4 26

8 5

10

2 3

18
12 30

16

14

4 26

8 5

10

2 3

18
12 30

16

14

4 26

Young Won Lim
5/11/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/11/18

Tree Traversal (1A)

Young Won Lim
5/11/18

 Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Tree (10A) 4 Young Won Lim
5/11/18

Infix, Prefix, Postfix Notations

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + *

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D –

Tree (10A) 5 Young Won Lim
5/11/18

Infix, Prefix, Postfix Notations and Binary Trees

Infix Notation Prefix Notation Postfix Notation

A + B + A B A B +

(A + B) * C * + A B C A B + C *

A * (B + C) * A + B C A B C + *

A / B + C / D + / A B / C D A B / C D / +

((A + B) * C) – D – * + A B C D A B + C * D –

+

A B

+

A B

*

C +

B C

*

A /

C D

+

/

A B

D

A B

–

*

+ C

Tree (10A) 6 Young Won Lim
5/11/18

In-Order, Pre-Order, Post-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

pre-order post-order

in-order

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea

Tree (10A) 7 Young Won Lim
5/11/18

Pre-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea

Tree (10A) 8 Young Won Lim
5/11/18

In-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea

Tree (10A) 9 Young Won Lim
5/11/18

Post-Order Binary Tree Traversals

https://en.wikipedia.org/wiki/Morphism

+

*

–a

b c

(a*(b-c))+(d/e)

a * b – c + d / e Infix notation

+ * a – b c / d e Prefix notation

a b c – * d e / + Postfix notation

/

d ea

Tree (10A) 10 Young Won Lim
5/11/18

Tree Traversal

https://en.wikipedia.org/wiki/Morphism

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

pre-order post-order

in-order

Tree (10A) 11 Young Won Lim
5/11/18

Pre-Order

https://en.wikipedia.org/wiki/Morphism

pre-order function
 Check if the current node is empty / null.
 Display the data part of the root (or current node).
 Traverse the left subtree by recursively calling the pre-order function.
 Traverse the right subtree by recursively calling the pre-order function.

FBADCEGIH

pre-order post-order

in-order

Tree (10A) 12 Young Won Lim
5/11/18

In-Order

https://en.wikipedia.org/wiki/Morphism

in-order function
 Check if the current node is empty / null.
 Traverse the left subtree by recursively calling the in-order function.
 Display the data part of the root (or current node).
 Traverse the right subtree by recursively calling the in-order function.

ABCDEFGHI

pre-order post-order

in-order

Tree (10A) 13 Young Won Lim
5/11/18

Post-Order

https://en.wikipedia.org/wiki/Morphism

post-order function
 Check if the current node is empty / null.
 Traverse the left subtree by recursively calling the post-order function.
 Traverse the right subtree by recursively calling the post-order function.
 Display the data part of the root (or current node).

ACEDBHIGH

pre-order post-order

in-order

Tree (10A) 14 Young Won Lim
5/11/18

Recursive Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

inorder(node)
 if (node = null)
 return
 inorder(node.left)
 visit(node)
 inorder(node.right)

preorder(node)
 if (node = null)
 return

visit(node)
 preorder(node.left)
 preorder(node.right)

postorder(node)
 if (node = null)
 return
 postorder(node.left)

postorder(node.right)
 visit(node)

Tree (10A) 15 Young Won Lim
5/11/18

Iterative Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

iterativeInorder(node)
 s ← empty stack

 while (not s.isEmpty() or
 node ≠ null)

 if (node ≠ null)
 s.push(node)
 node ← node.left
 else
 node ← s.pop()
 visit(node)

node ← node.right

iterativePreorder(node)
 if (node = null)

return
 s ← empty stack
 s.push(node)

while (not s.isEmpty())
 node ← s.pop()
 visit(node)
 // right child is pushed first
 // so that left is processed first
 if (node.right ≠ null)
 s.push(node.right)
 if (node.left ≠ null)
 s.push(node.left)

iterativePostorder(node)
 s ← empty stack
 lastNodeVisited ← null

 while (not s.isEmpty() or node ≠ null)
 if (node ≠ null)
 s.push(node)
 node ← node.left
 else
 peekNode ← s.peek()
 // if right child exists and traversing

// node from left child, then move right
 if (peekNode.right ≠ null and

lastNodeVisited ≠ peekNode.right)
 node ← peekNode.right
 else
 visit(peekNode)
 lastNodeVisited ← s.pop()

Tree (10A) 16 Young Won Lim
5/11/18

Stack

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Tree (10A) 17 Young Won Lim
5/11/18

Queue

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)#/media/File:Data_Queue.sv
g

Tree (10A) 18 Young Won Lim
5/11/18

Search Algorithms

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

DFS (Depth First Search) BFS (Breadth First Search)

Tree (10A) 19 Young Won Lim
5/11/18

DFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

DFS (Depth First Search)A recursive implementation of DFS:

 procedure DFS(G,v):
 label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
 if vertex w is not labeled as discovered then
 recursively call DFS(G,w)

A non-recuUrsive implementation of DFS:

 procedure DFS-iterative(G,v):
 let S be a stack
 S.push(v)
 while S is not empty
 v = S.pop()
 if v is not labeled as discovered:
 label v as discovered

for all edges from v to w in G.adjacentEdges(v) do
 S.push(w)

Tree (10A) 20 Young Won Lim
5/11/18

Search Algorithms

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

DFS (Depth First Search) BFS (Breadth First Search)

Tree (10A) 21 Young Won Lim
5/11/18

BFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

BFS (Breadth First Search)

Breadth-First-Search(Graph, root):

 create empty set S
 create empty queue Q

 add root to S
Q.enqueue(root)

 while Q is not empty:
 current = Q.dequeue()
 if current is the goal:
 return current
 for each node n that is adjacent to current:

if n is not in S:
 add n to S
 n.parent = current
 Q.enqueue(n)

Tree (10A) 22 Young Won Lim
5/11/18

In-Order

Rosen

n o p

j k

e f

b c d

a

g h i

l m

pre-order post-order

in-order

pre-order post-order

in-order

Tree (10A) 23 Young Won Lim
5/11/18

Ternary Tree

Rosen

n o p

j k

e f

b c d

a

g h i

l m

a-b-e-j-k-n-o-p-f-c-d-g-l-m-h-i

Tree (10A) 24 Young Won Lim
5/11/18

In-Order

Rosen

n o p

j k

e f

b c d

a

g h i

l m

j-e-n-k-o-p-b-f-a-c-l-g-m-d-h-i

Tree (10A) 25 Young Won Lim
5/11/18

Post-Order

Rosen

n o p

j k

e f

b c d

a

g h i

l m

j-n-o-p-k-e-f-b-c-l-m-g-h-i-d-a

Tree (10A) 26 Young Won Lim
5/11/18

Ternary

Ternary

Etymology
Late Latin ternarius (“consisting of three things”), from terni (“three each”).
Adjective

ternary (not comparable)
 Made up of three things; treble, triadic, triple, triplex
 Arranged in groups of three
 (mathematics) To the base three [quotations ▼]
 (mathematics) Having three variables

https://en.wiktionary.org/wiki/ternary

The sequence continues with quaternary, quinary, senary, septenary, octonary,
nonary, and denary, although most of these terms are rarely used. There's no word
relating to the number eleven but there is one that relates to the number twelve:
duodenary.

https://en.oxforddictionaries.com/explore/what-comes-after-primary-secondary-tertiary

Young Won Lim
5/11/18

References

[1] http://en.wikipedia.org/
[2]

