Graph Overview (1A)

Young Won Lim
5/11/18

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Young Won Lim
5/11/18

Simple Graph ¢ Multi-Graph
Murbi- edgr

A simple graph is an undirected graph

without multiple edges or loops. © ©

) | pﬁmf

the edges form a set (rather than a multiset)
each edge is an unordered pair of distinct vertices.

can define a simple graph to be a set@f vertices
together with a se@of edges, F

E are 2-element subsets of V

H\
with n vertices,
the degree of every vertex isat mostn -1

-

MAAR = Y\’\
https://en.wikipedia.org/wiki/Travelling_salesman_problem
= smu}ole ﬁya\”

Graph Overview (1A) 25 Young Won Lim

5/11/18

Multi-Graph

A multigraph, as opposed to a simple graph, is an
undirected graph in which multiple edges (and
sometimes loops) are allowed.

Qoo B

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Graph Overview (1A) 26 Young Won Lim

5/11/18

Multiple Edges

« multiple edges
« parallel edges
« Multi-edges

are two or more edges
that are incident to the same two vertices

A simple graph has no multiple edges.

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Graph Overview (1A) 27 Young Wor L

Loop

« aloop
» a self-loop
« a buckle

IS an edge that connects a vertex to itself.

A simple graph contains no loops.

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Graph Overview (1A) 28 Young Won Lim

5/11/18

Walks

For a graph G= (V, E), a walk is defined as a sequence
of alternating vertices and edges suchas v, e, v, e, -, e, v,

where each edge e, ={v, ,, v/} e, e, e, e,

The length of this walk is k

Edges are allowed to be repeated e;=e; for somei, j
S w\%@l A :
R s
4 ABCDE ¢
ABCDCBE
®
E D
http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits YC |9€ [/ t-f M 80‘4{5'

Graph Overview (1A) 29 Young Won Lim

Open / Closed Walks

A walk is considered to be closed if the starting vertex is
the same as the ending vertex.

Otherwise opén

vV, v, v, V, o vV, =V,
A (S
A . o) |)3h .

closed walk @BCD@ ’7‘

i >,
openwalk ABCDE ‘V
g
1)\ openwalk ABCDCBE
E
\I/ D

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

Graph Overview (1A) 31 Young Won Lim

5/11/18

Tralls

A trail is defined as a walk with no repeated edges. e;#e; foralli, j
S
4 (0] 0] o o o
. ;{ Vo Vi V) V3 Vi
(/‘\‘((JVUX {yw 0. ;
A B
closed trail closed walk ABcCDA
C
open trail open walk ABCDE
opentrait openwalk ABCDCBE
E D
http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits
i Young Won Lim
Graph Overview (1A) 32 5/11/18

Paths

A path is defined as a open trail with no repeated vertices. e;#e; foralli, j
_ 74 v,#Zv, foralli, j
&N(}_Q- Xy \ \} $€*€ﬁknﬁa J
?ou h e, eyer J
e e e e
o o ‘0o o ... “ o
vy v, v, Vs, V. #V,
C\Y [,Wtkﬂ \'\'\ ‘é ij‘*'\ @
Lj C\Q' v’ "’ \,) 0\
\PWY\'\ (#) A B
path closed trail closed walk ABCDA
' C
path open trail openwalk ABCDE
path epen-trait open walk ABCDCBE
path open trail openwalk BEDABC E D

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

Graph Overview (1A) 33 Young Won Lim

5/11/18

Cycles

A cycle is defined as a closed trail with no repeated e;#e; foralli, j

vertices except the start/end vertex vi#v, foralli, j

civiwd o) V. yepest
)
(yt P e e e e
K O o tle e e ... “ o
Vo vV, v, Vs, V. =V,
’ V)
W)
Qi
v O (,YG\C('\L)
<y A B
cycle circuit closed walk ABCDA
eyete circuit closed walk ABCDEBDA ¢
E D

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

Graph Overview (1A) 34 Young Won Lim

5/11/18

Circuits

A circuit is defined as a closed trail with possibly repeated e;#e; foralli, j

vertices but with no repeated edges v,=v, for some i,]

V. vey 3
€ €, €3 €
‘ O ’ . . e o o O
Vo vy vy V3 Vi = Vg
4., y
- 0 .
N\ iy L™ A B
circuit closed walk ABCDA
circuit closed walk ABCDEBDA ¢
kB D
http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits
Graph Overview (1A) 35 Young Won Lim

5/11/18

Walk, Trail, Path, Circuit, Cycle

V0 % Vk V0 = Vk
/‘?\ __—
openwalks closedwalks
trails circuits
path cycle
vV, # vV, vV, # vV,
el. #* ej el. #* ej

Graph Overview (1A) 36 Young Won Lim

5/11/18

Walk, Trail, Path, Circuit, Cycle

Vertices| Edges
Walk | may may (Closed/Open)

repeat repeat ,_JIK—T

o -O- o}

Trail may cannot| | [(Open) \

repeat repeat .ﬁA@
Path || cannot cannot (Open)

repeat repeat oO—O0——O0——O0—=0
Circuit, may cannot ||/ (Closed)

repeat repeat @
Cycle || cannot (Closed)

_ } —O-

https://math.stac arnge-com/questions/655589/what-is-difference-between-cycle-path-and-circuit- wW /

Graph Overview (1A)

37

Young Won Lim
5/11/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/11/18

the came cyole

A\/’_‘\VTF\

\

/o 6-b-C-d

(Gh—

c—h- &7

AN S

Eulerian Cycle (2A)

Young Won Lim
5/11/18

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Young Won Lim
5/11/18

Path and Trall

Vertices | Edges

Walk may may (Closed/Open)
repeat |repeat

Trail may cannot | (Open)
repeat | repeat

Path cannot |cannot ((Open)
repeat |repeat

Circuit | may cannot | (Closed)
repeat |repeat

Cycle | cannot |cannot |(Closed)
repeat | repeat

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A)

0—0O0—>0
Alpath)is a trail in which all vertices are distinct. > @ V. vepenf X
(e t possibly the first and last) €. Yeped X
@is a walk in which all edges are distinct. < e vepeed X

O

Young Won Lim
5/11/18

Simple Paths and Cycles

Most literatures require that all of the edges and vertices of a
path be distinct from one another.

But, some do not require this and instead use the term simple
path to refer to a path which contains no repeated vertices.

A simple cycle may be defined as a closed walk with no
repetitions of vertices and edges allowed, other than the
repetition of the starting and ending vertex

There is considerable variation of terminology!!!
Make sure which set of definitions are used...

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A) 4 Young Wem

Simple Paths and Cycles

ynosk sowme
trail circuit path cycle
path cycle simple | simple
a—0—0 path cycle
—0—0 3

Eulerian Cycles (2A) 5 Young Won L

Paths and Cycles

path

cycle

e e e e
o o 0o o “ o
Vo vy v, V3 Vi
path VO, el’ V]., ez’) ek, Vk
cycle vy e, v, e, -, e, v [(vo=v,)
path Vo €V, €, =+, €, V, (Vo & Vk)
cycle v, e, v, e, -, e, V, I(v0 =v,)

Eulerian Cycles (2A)

path

cycle

Young Won Lim

5/11/18

Euler Cycle

Some people reserve the terms path and cycle no repeating vertices
to mean non-self-intersecting path and cycle.

A (potentially) self-intersecting path is known repeating vertices
as ar an open walk;
and a(potentially) self-intersecting cycle, repeating vertices
a d or a closed walk.

This ambiguity can be avoided by using the terms repeating vertices
Eulerian trail and Eulerian circuit
when self-intersection is allowed

https://en.wikipedia.org/wiki/Eulerian_path

7 Young Won Lim
5/11/18

Eulerian Cycles (2A)

Euler Cycle

visits every edge exactly ance
the existence of Eulerian cycles
all vertices in the graph have an even degree

connected graphs with all vertices of even degree h
ave an Eulerian cycles

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A) 8 Young Won L

Euler Path

visits every edge exactly ance
the existence of Eulerian paths
all the vertices in the graph have an even degree

except only two vertices with an odd degree

An Eulerian path starts and ends at different vertices
An Eulerian cycle starts and ends at the same vertex.

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A) 9 Young Won L

Conditions for Eulerian Cycles and Paths

An odd vertex = a vertex with an odd degree
An even vertex = a vertex with an even degree

of odd vertices

Eulerian Path

0

6(@Srian Cycle

No <€ e
2 (es —>No
4,6,8, ... No No
1,3,5,7, ... No such graph | No such graph

If the graph is connected

Eulerian Cycles (2A)

http://people.ku.edu/~jimartin/courses/math105-F11/Lectures/chapter5-part2.pdf

10

Young Won Lim
5/11/18

The number of odd vertices

of odd vertices Eulerian Path Eulerian Cycle
0 No Yes
2 Yes No
3 2
of odd vertices # of odd vertices
=0 =2
_— |
Eulerian Cycle ‘ Eulerian Path
No Eulerian Path No Eulerian Cycle

Eulerian Cycles (2A) 11 Young Won Lim

5/11/18

Eulerian Graph

Eulerian graph :

a graph with an Eulerian cycle

a graph with every vertex of even degree
(the number of odd vertices is 0)

These definitions coincide for connected graphs.

Every vertex of this &
graph has an even degree.
Therefore, this is an
Eulerian graph. Following
the edges in alphabetical
order gives an Eulerian
circuit/cycle.

12 Young Won Lim
5/11/18

Eulerian Cycles (2A)

Odd Degree and Even Degree

3
The Konigsberg &2
Bridges multigraph. This
multigraph is not
Eulerian, therefore, a
solution does not exist.

Every vertex of this &J
graph has an even degree.
Therefore, this is an
Eulerian graph. Following
All odd degree vertices Lot e

- order gives an Eulerian
circuit/cycle.

All even degree vertices

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A) 13 Young Won Lim

5/11/18

Euler Cycle Example

F

AN
Q ABCDEFGHIJK

a path denoted by
the edge names

7

All even degree vertices
en.wikipedia.org EUIerian CyC|ES

Eulerian Cycles (2A) 14 Young Won Lim

5/11/18

Euler Cycle Example

OODD DD
NAAVAVAVAL
NAATATA AL

Eulerian Cycles (2A) 15 YoungWwonlL im

1111111

Euler Path and Cycle Examples

D4
Eulerian Path Euerian Cycle Euerian Cycle
1. BBADCDEBC 1. CDCBBADEBC 2. CDEBBADC

2. CDCBBADEB

a path denoted by
the vertex names

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

Eulerian Cycles (2A) 16 Young Won Lim

5/11/18

Eulerian Cycles of Undirected Graphs

An undirected graph has an Eulerian cycle
if and only if every vertex has even degree,

and all of its vertices with- nonzero deqree
belong to a ((m'/ . ,

An undirected graph can be
decomposed into edge-disjoint cycles
if and only if all of its vertices have even degree.

So, a graph has an Eulerian cycle Every vertex of this &
if and only if it can be decomposed graph has an even degree.
into edge-disjoint cycles Wl bbibsabeet il

. g J y . Eulerian graph. Following
and its nonzero-degree vertices the edges in alphabetical
belong to a single connected component. order gives an Eulerian

circuit/cycle.

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A) 17 Young e s

Edge Disjoint Cycle Decomposition

@Q*Q

All even Euerian Edge Disjoint
vertices <:> Cycle <:> Cycles

Eulerian Cycles (2A) 18 Young Won Lim

5/11/18

Eulerian Paths of Undirected Graphs

An undirected graph has an Eulerian trail

if and only if exactly zero or two vertices have odd degree,
and all of its vertices with nonzero degree

belong to a single connected component.

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A) 19 Young Won Lim

5/11/18

Eulerian Cycles of DiGraphs

A directed graph has an Eulerian cycle

if and only if every vertex has equal in degree and out degree,
and all of its vertices with nonzero degree

belong to a single strongly connected component.

Equivalently, a directed graph has an Eulerian cycle
If and only if it can be decomposed

into edge-disjoint directed cycles

and all of its vertices with nonzero degree

belong to a single strongly connected component.

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A) 20 Young Won L

Eulerian Paths of DiGraphs

A directed graph has an Eulerian path

if and only if at most one vertex has (out-degree) — (in-degree) = 1,

at most one vertex has (in-degree) — (out-degree) = 1,

every other vertex has equal in-degree and out-degree,

and all of its vertices with nonzero degree belong to a single connected
component of the underlying undirected graph.

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A) 21 Young Won Lim

5/11/18

Seven Bridges of Konigsberg

The problem was to devise a walk through the city that
would cross each of those bridges once and only once.

https://en.wikipedia.org/wiki/Seven_Bridges_of K%C3%B6nigsberg

Eulerian Cycles (2A) 292 Young Won Lim

5/11/18

Seven and Eight Bridges Problems

7 bridges problem 8 bridges problem

> 3 5 4
4
Eulerian Path
® AEHGFDCB®
https://en.wikipedia.org/wiki/Seven_Bridges_of K%C3%B6nigsberg
Eulerian Cycles (2A) 23 Young Won Lim

Nine and Ten Bridges Problems

9 bridges problem 10 bridges problem
: T, N
A Cc
5 | 4 6 | A
> 6
Eulerian Path Eulerian Cycle
®EHGFDCBAI® ©®AEHGFDCBJI®

https://en.wikipedia.org/wiki/Seven_Bridges_of K%C3%B6nigsberg

Eulerian Cycles (2A) 24 Young Won Lim

5/11/18

8 bridges — Eulerian Path

Eulerian Path

® AEHGFDCB®

https://en.wikipedia.org/wiki/Seven_Bridges_of K%C3%B6nigsberg

Eulerian Cycles (2A) 25 Young Won Lim

5/11/18

Eulerian Path

OEHGFDCBAI®

Eulerian Cycles (2A) 6 YoungWonL im

1111111

be&E&EE
iededirdied ol

Eulerian Cycle

®AEHGFDCBJI @

Eulerian Cycles (2A) 27 YoungWonl im

1111111

Fleury’s Algorithm

To find an Eulerian path or an Eulerian cycle:
1. make sure the graph has either 0 or 2 odd vertices

2. if there are 0 odd vertex, start anywhere.
If there are 2 odd vertices, start at one of the two vertices

3. follow edges one at a time.
If you have a choice between a bridge and a non-bridge,
Always choose the non-bridge

4. stop when you run out of edge

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

Eulerian Cycles (2A) 28 Young Won Lim

5/11/18

Bridges

A bridge edge
Removing a single edge from a connected graph
can make it disconnected

Non-bridge edges

Loops cannot be bridges
Multiple edges cannot be bridges

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

Eulerian Cycles (2A) 29 Young Won Lim

5/11/18

Bridge examples in a graph

O

NN

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

Eulerian Cycles (2A) 30 Young Won Lim

5/11/18

B
A C D
o
E F
FEACB

If there exists other choice other than a bridge
The bridge must not be chosen.

B
bridge

A C D

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

Eulerian Cycles (2A) 31 Young Won Lim

5/11/18

Fleury’s Algorithm (1)

B B B B

A D A C D A C D A C D
& O
(0) (©)
E F E F E F E F
FE FEA FEAC

B

A C D
(@)

E F
FEACB

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

Eulerian Cycles (2A) 32 Young Won Lim

5/11/18

Fleury’s Algorithm (2)

B B B B
et CED Ay C%D A@D AOD
(0] o o (0]
E F E F E F E F

FEACB FEACBD FEACBDC
BA: bridge DB: bridge CF :bridge
BD: chosen DC: chosen CF :chosen

no other choice

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

FEACBDCF
FD: bridge
ED: chosen

no other choice

Eulerian Cycles (2A) 33

Young Won Lim
5/11/18

Fleury’s Algorithm (3)

B B B
o
A C D A C D A C D
(6} (® (0] O 0] (0]
(0] G (0] @] (0] @]
E F E F E F
FEACBDCFED FEACBDCFDB
DB: bridge BA: bridge
DB: chosen BA : chosen
no other choice no other choice
http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter5-part2.pdf
Eulerian Cycles (2A) 34 Young Won Lim

5/11/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/11/18

Hamiltonian Cycle (3A)

Young Won Lim
5/11/18

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Young Won Lim
5/11/18

Hamiltonian Cycles

A Hamiltonian path is a path
in an undirected or directed graph
that visits each vertex exactly once.

A Hamiltonian cycle is
a Hamiltonian path that is a cycle.

the Hamiltonian path problem is NP-complete.

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 3 Young Won Lim

Hamiltonian Cycles

The above as a two-

One possible Hamiltonian dimensional planar graph

cycle through every vertex of
a dodecahedron is shown in
red - like all platonic solids,
the dodecahedron is
Hamiltonian

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 4 Young Won Lim

Hamiltonian Cycles

The Herschel graph is &
the smallest possible
polyhedral graph that does
not have a Hamiltonian
cycle.

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 5 Young Won Lim

Hamiltonian Cycles

a complete graph with more than two vertices is Hamiltonian
every cycle graph is Hamiltonian

every tournament has an odd number of Hamiltonian paths
every platonic solid, considered as a graph, is Hamiltonian
the Cayley graph of a finite Coxeter group is Hamiltonian

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 6 Young Won Lim

Complete Graphs and Cycle Graphs

Complete graph Cycle graph

A cycle graph of length 6

K7, a complete graph with 7 vertices

https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Cycle_graph

Hamiltonian Cycles (3A) 7 Young Won Lim

Complete Graphs

Kpi: 0 ' K 1 ' Ky 3 ' K3 6

Ks: 10 | Kg: 15

/ 0N ; AT
4/.‘.,‘-“: RO, | L)
SRR | ARORTSA | feah e \
WX X €60y IR KE ;
CAEIT TS B T As
--th S XA PR B LA RS
NP A2 LS B2 7
\\17'0101 - s) f’.‘\.‘:‘wfz’."f 3

https://en.wikipedia.org/wiki/Complete_graph

Hamiltonian Cycles (3A) 8 Young Won Lim

Tournament Graphs

Tournament

2

A tournament on 4 vertices

A transitive tournament on 8 &
vertices.

https://en.wikipedia.org/wiki/Tournament_(graph_theory

Hamiltonian Cycles (3A) o) Young Won Lim

Platonic Solid Graphs

Tetrahedron

Cube

Octahedron

Dodecahedron

Icosahedron

Four faces

Six faces

Eight faces

Twelve faces

Twenty faces

(Animation)
(3D model)

https://en.wikipedia.org/wiki/Platonic_solid

(Animation)
(3D model)

(Animation)
(3D model)

(Animation)
(3D model)

(Animation)
(3D model)

Hamiltonian Cycles (3A)

10

Young Won Lim
5/11/18

Hamiltonian Cycles — Properties (1)

Any Hamiltonian cycle can be converted
to a Hamiltonian path by removing one of its edges,

but a Hamiltonian path can be extended to
Hamiltonian cycle only if its endpoints are adjacent.

All Hamiltonian graphs are biconnected, but a
biconnected graph need not be Hamiltonian

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 11 Young Won Lim

Biconnected Graph

a biconnected graph is a connected and "nonseparable"
graph, meaning that if any one vertex were to be
removed, the graph will remain connected.

a biconnected graph has no articulation vertices.
The property of being 2-connected is equivalent to
biconnectivity, with the caveat that the complete graph

of two vertices is sometimes regarded as biconnected
but not 2-connected.

https://en.wikipedia.org/wiki/Biconnected_graph

Hamiltonian Cycles (3A) 12 Young Won Lim

Biconnected Graph Examples

SN 4%,

A biconnected graph A graph that is not A biconnected graph A graph that is not

on four vertices and biconnected. The on five vertices and biconnected. The

four edges removal of vertex x six edges removal of vertex x
would disconnect the would disconnect the
graph. graph.

https://en.wikipedia.org/wiki/Biconnected_graph

Hamiltonian Cycles (3A) 13 Young Won Lim

5/11/18

Eulerian Graph

An Eulerian graph G :
a connected graph in which
every vertex has even degree

An Eulerian graph G necessarily has an Euler cycle, 4
a closed walk passing through each edge of G exactly once.

Every vertex of this &
graph has an even degree.
Therefore, this is an
Eulerian graph. Following
the edges in alphabetical
order gives an Eulerian
circuit/cycle.

Hamiltonian Cycles (3A) 14 Young Won Lim

Eulerian Graph (1)

The Eulerian cycle corresponds to a Hamiltonian cycle in
the line graph L(G), so the line graph of every Eulerian
graph is Hamiltonian graph.

G > L(G)
A B
D
C
@D>—o
D E
Eulerian Cycle > Hamiltonian Cycle
ABCDECA 1-2-3-4-5-6-1

Hamiltonian Cycles (3A) 15 Young Won Lim

Eulerian Graph (2)

The Eulerian cycle corresponds to a Hamiltonian cycle in
the line graph L(G), so the line graph of every Eulerian
graph is Hamiltonian graph.

G
A B
D
C
@—o
D E
Eulerian Cycle Hamiltonian Cycle
ABCEDCA 1-2-5-4-3-6-1

Hamiltonian Cycles (3A) 16 Young Won Lim

Eulerian Path (1)

The Eulerian path corresponds to a Hamiltonian path in the
line graph L(G)

G > L(G)
o 1 o @
o9 ®
Eulerian Path > Hamiltonian Path
ABCADC 1-2-3-4-5

Hamiltonian Cycles (3A) 17 Young Won Lim

Eulerian Path (2)

Line graphs may have other Hamiltonian cycles that do not
correspond to Euler cycles.

G L(G)
B
A D
E F
Eulerian Path Hamiltonian Path
FEACBDCFDBA 1-2-3-4-5-6-7-8-9-10

Hamiltonian Cycles (3A) 18 Young Won Lim

Eulerian Path (3)

Line graphs may have other Hamiltonian cycles that do not
correspond to Euler cycles.

G > L(G)
B
A D
E F
not always
Eulerian Cycle X = >< Hamiltonian Cycle
Eulerian Path X 1-7-3-6-8-5-4-9-10-2-1

Hamiltonian Cycles (3A) 19 Young Won Lim

Hamiltonian Cycles — Properties (2)

This Eulerian cycle corresponds to a Hamiltonian cycle in
the line graph L(G), so the line graph of every Eulerian
graph is Hamiltonian graph.

Line graphs may have other Hamiltonian cycles that do not
correspond to Euler paths.

The line graph L(G) of every Hamiltonian graph G is itself
Hamiltonian, regardless of whether the graph G is Eulerian.

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 20 Young Won Lim

Line Graphs

In the mathematical discipline of graph theory, the line graph
of an undirected graph G is another graph L(G) that
represents the adjacencies between edges of G.

Given a graph G, its line graph L(G) is a graph such that

« each vertex of L(G) represents an edge of G; and

« two vertices of L(G) are adjacent if and only if their
corresponding edges share a common endpoint ("are

incident") in G.

That is, it is the intersection graph of the edges of G,
representing each edge by the set of its two endpoints.

https://en.wikipedia.org/wiki/Line_graph

Hamiltonian Cycles (3A) 21 Young Won Lim

Line Graphs Examples

......

)
- /
pu /

Graph G Vertices in L(G) Added edges in L(G) The line graph L(G)
constructed from edges
inG

https://en.wikipedia.org/wiki/Line_graph

Hamiltonian Cycles (3A) 22 Young Won Lim

Hamiltonian Cycles — Properties (3)

A tournament (with more than two vertices) is Hamiltonian if and
only if it is strongly connected.

The number of different Hamiltonian cycles
in a complete undirected graph on n verticesis (n — 1)!/ 2
in a complete directed graph on n vertices is (n — 1)!.

These counts assume that cycles that are the same apart from
their starting point are not counted separately.

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 23 Young Won Lim

Strongly Connected Component

a directed graph is said to be strongly connected or
diconnected if every vertex is reachable from every other vertex.

The strongly connected components or diconnected
components of an arbitrary directed graph form a partition into
subgraphs that are themselves strongly connected.

Graph with strongly &)
connected components
marked

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 24 Young Won Lim

Dual Graph

the dual graph of a plane graph G is a graph
that has a vertex for each face of G.

The dual graph has an edge whenever two
faces of G are separated from each other by an
edge,

and a _self-loop when the same face appears on The red graph is the dual graph &
both sides of an edge. of the blue graph, and vice versa.

each edge e of G has a corresponding dual
edge, whose endpoints are the dual vertices
corresponding to the faces on either side of e.

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 25 Young Won Lim

Dual Graph

X
A —QO
;. p—c
B —C
Vdd
XF———o ~C(A+B)
C
y
A —| I— B
GND
V
https://en.wikipedia.org/wiki/Hamiltonian_path
Hamiltonian Cycles (3A) 26 Young Won Lim

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/11/18

Shortest Path Problem (4A)

Young Won Lim
1111111

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Young Won Lim
5/11/18

Shortest Path Problem

the shortest path problem is the problem of finding a path
between two vertices (or nodes) in a graph such that the
sum of the weights of its constituent edges is minimized.

(6,4,5,1)and (6, 4,3, & Shortest path (A, C, E, D, F) &
2,1) are bOth paths between vertices A and F in the
between vertices 6 and 1 weighted directed graph

https://en.wikipedia.org/wiki/Shortest_path_problem

Shortest Path Problem (4A) 3 Young Won Lim

5/11/18

Types of Shortest Path Problems

The single-pair shortest path problem:
to find shortest paths from a source vertex v to a
destination vertex w in a graph

The single-source shortest path problem:
to find shortest paths from a source vertex v to all other
vertices in the graph.

The single-destination shortest path problem:

to find shortest paths from all vertices in the directed
graph to a single destination vertex v. This can be
reduced to the single-source shortest path problem by
reversing the arcs in the directed graph.

The all-pairs shortest path problem:
to find shortest paths between every pair of vertices v, V'
in the graph.

https://en.wikipedia.org/wiki/Shortest_path_problem

Shortest Path Problem (4A) 4 Young Won Lim

5/11/18

Dijkstra’s Algorithm Example Summary

(O the initial node
(O the current node
@ the visited nodes

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 5 Young Won Lim

5/11/18

Dijkstra’s Algorithm Example (1)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 6 Young Won Lim

5/11/18

Dijkstra’s Algorithm Example (2)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 7 Young Won Lim

5/11/18

Dijkstra’s Algorithm Example (3)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 8 Young Won Lim

5/11/18

Dijkstra’s Algorithm Example (4)

LiW=gq w(u.y) = Lw)+NOAV) 310 < L(T)=2

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 9 Young Won Lim

5/11/18

Dijkstra’s Algorithm Example (5)

11 g 6 .
4 20 (4) >=20

2
(3
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Out That's alf

Shortest Path Problem (4A) 10 Young Won Lim

5/11/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 11 Young Won Lim

5/11/18

Dijkstra’s Algorithm (1)

Let the node at which we are starting

be called the initial node.

Let the distance of node Y be

the distance from the initial node to Y.

Dijkstra's algorithm will assign some initial distance
values and will try to improve them step by step.

1. Mark all nodes unvisited.
Create a set of all the unvisited nodes called the
unvisited set.

2. Assign to every node a tentative distance value:
set it to zero for our initial node and

to infinity for all other nodes.

Set the initial node as current.

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 12 Young Won Lim

5/11/18

Dijkstra’s Algorithm (2)

3. Remove the current node from the unvisited set

For all the unvisited neighbors of the current node,
calculate their tentative distances
through the current node.

Compare the newly calculated tentative distance to the Newly calculated
current assigned value and assign the smaller one. tentative distance

through the current node

For example, if the current node A is marked with a

distance of 6, and the edge connecting it with a neighbor
B has length 2, then the distance to B through A will be 6 6
+ 2 = 8. If B was previously marked with a distance _ an unvisited
greater than 8 then change it to 8. Otherwise, keep the neighbor
current Value. ﬁgggnt
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif Qnitial
node

Shortest Path Problem (4A) 13 Young Won Lim

5/11/18

Dijkstra’s Algorithm (3)

4. After considering all of the neighbors of the current

node, mark the current node as visited and remove it

consider all the neighbors of

from the unvisited set. A visited node will never be the eurrent node

checked again.

current node : chosen
node with the smallest
tentative distance from
the unvisited set

)

current node : move to the

visited set, after calculating

the tentative distances of all

the neighbors of the current
node

" current
node

Bl

o

o

R
o
.
ons .
ot)
:- e

Initial
node

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A)

14 Young Won Lim
5/11/18

Dijkstra’s Algorithm (4)

5. Move to the next unvisited node with the smallest
tentative distances and repeat the above steps which
check neighbors and mark visited.

......

current
node

S

Initial

node
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 15 Young Won Lim

5/11/18

Dijkstra’s Algorithm (5)

5-a. If the destination node has been marked visited
(when planning a route between two specific nodes)

or if the smallest tentative distance among the nodes in
the unvisited set is infinity (when planning a complete
traversal; occurs when there is no connection between
the initial node and remaining unvisited nodes),

then stop. The algorithm has finished.
5-b. Otherwise, select the unvisited node that is marked

with the smallest tentative distance,
set it as the new current node, and go back to step 3.

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 16 Young Won Lim

5/11/18

Dijkstra’s Algorithm — Pseudocode 1

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

function Dijkstra(Graph, source):
create vertex set Q
for each vertex v in Graph:
dist[v] < INFINITY
prev[v] <« UNDEFINED
addvto Q
dist[source] < O

while Q is not empty:
u < vertex in Q with min dist[u]

remove u from Q

% for each neighbor v of u:
1 alt < dist[u] + length(u, V)

19
20
21
22
23

if alt < dist[v]:
dist[v] < alt
prev[v] < u

return dist[], prev([]

/I Initialization

/I Unknown distance from source to v

/l Previous node in optimal path from source
/I All nodes initially in Q (unvisited nodes)

/I Distance from source to source

/I Node with the least distance

/I will be selected first

/I where v is still in Q. for each v in Q:

/Il A shorter path to v has been found

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A)

17 Young Won Lim
5/11/18

Dijkstra’s Algorithm — Pseudocode 2

Procedure Dijkstra(G: weighted connected simple graph, with all positive weights)
{G has verticesa=v,, v, ..., v, =z and length w(v, v)

where w(v, vj) = oo if {v, vj} IS not an edge in G}

fori:=1ton
L(v) ==

L(a) =0

S ={}

{the labels are now initialized so that the label of a is 0 and
All other labels are «, and S is the empty set}

whilez & S
u ;= avertex not in S with L(v) minimal
S =Su{u}

for all vertices vnotin S
if L(u) +w(u,v) < L(u) then L(v) := L(u) + w(u,v)
{this adds a vertex to S with minimal label and
updates the labels of vertices not in S}
return L(z) {L(z) = length of a shortest path from a to z}

Discrete Mathematics and It's Applications, K. H. Rosen

Shortest Path Problem (4A) 18 Young Won Lim

Dijkstra Algorithm Pseudocode 2 Example (0)

a b ¢ d e z
a .o 4 2 o o o
bl4 o« 1 5 w
C 2 1 o 8 10 o
d |lo 5 8 o 2 6
€ loo o 10 8 o 3
Z |co oo o© 6 3 o

i
W(ui’uj)

Discrete Mathematics and It's Applications, K. H. Rosen

Shortest Path Problem (4A) 19 Young Won Lim

5/11/18

Dijkstra Algorithm Pseudocode 2 Example (1)

Discrete Mathematics and It's Applications, K. H. Rosen

Shortest Path Problem (4A) 20 Young Won Lim

5/11/18

Dijkstra Algorithm Pseudocode 2 Example (2)

et

P(a,c,b) < P(a,b)

Discrete Mathematics and It's Applications, K. H. Rosen

Shortest Path Problem (4A) 21 Young Won Lim

5/11/18

Dijkstra Algorithm Pseudocode 2 Example (3)

S=l{a,c,b}
L(b)+w(b,d)=3+5 < L(d)=10 P(a,c,b,d) < P(a,c,d)
L(b)+w(b,e)=3+0 > L(e)=12
L(b)+w(b,z)=3+oo = L(z)=w
Discrete Mathematics and It's Applications, K. H. Rosen
Y Won Li
Shortest Path Problem (4A) 22 oung e

Dijkstra Algorithm Pseudocode 2 Example (4)

Discrete Mathematics and It's Applications, K. H. Rosen

Shortest Path Problem (4A) 23 Young Won Lim

5/11/18

Dijkstra Algorithm Pseudocode 2 Example (5)

S=la,c,b,d,e}

L(e)+w(e,z)=10+3 < L(z)=14 P(a,c,b,d,e,z) < P(a,c,b,d,z)
Discrete Mathematics and It's Applications, K. H. Rosen
Young Won Lim
Shortest Path Problem (4A) 24 SRl

Dijkstra Algorithm Pseudocode 2 Example (6)

Discrete Mathematics and It's Applications, K. H. Rosen

Shortest Path Problem (4A) 25 Young Won Lim

5/11/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/11/18

Minimum Spanning Tree (5A)

3 (bt L pin
Minigon B4 Z0e R

5 phnnin]:'I }f‘; Mw
T ree e = GdeX
0 Doviivia
&) lomskad
® P(}y“

Young Won Lim
5/11/18

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Young Won Lim
5/11/18

Minimum Spanning Tree

a subset of the edges of a connected, edge-weighted
(un)directed graph that connects all the vertices
together, without any cycles and with the minimum
possible total edge weight.

a spanning tree whose sum of edge weights is as small
as possible.

More generally, any edge-weighted undirected graph (not
necessarily connected) has a minimum spanning forest,
which is a union of the minimum spanning trees for its
connected components.

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Minimum Spanning Tree (5A) 3 Young Won L

Types of Shortest Path Problems

A planar graph and its minimum spanning &’
tree. Each edge is labeled with its weight,
which here is roughly proportional to its
length.

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Minimum Spanning Tree (5A) 4 Young Won L

Properties (1)

Possible multiplicity
If there are n vertices in the graph,
then each spanning tree has n-1 edges.

Uniquenss

If each edge has a distinct weight

then there will be only one, unigue minimum spanning tree.
this is true in many realistic situations

Minimum-cost subgraph

If the weights are paositive, then a minimum spanning tree is
In fact a minimum-cost subgraph connecting all vertices,
since subgraphs containing cycles necessarily have more

total weight.

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Minimum Spanning Tree (5A) 5 Young Won L

Properties (2)

Cycle Property

For any cycle C in the graph, if the weight of an edge e of C
Is larger than the individual weights of all other edges of C,
then this edge cannot belong to a MST.

Cut property

For any cut C of the graph, if the weight of an edge e in the
cut-set of C is strictly smaller than the weights of all other
edges of the cut-set of C, then this edge belongs to all
MSTs of the graph.

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Minimum Spanning Tree (5A) 6 Young Won L

Properties (3)

Minimum-cost edge
If the minimum cost edge e of a graph is unique, then this
edge is included in any MST.

Contraction

If T is a tree of MST edges, then we can contract T into a
single vertex while maintaining the invariant that the MST of
the contracted graph plus T gives the MST for the graph
before contraction.

https://en.wikipedia.org/wiki/Minimum_spanning_tree

7 Young Won Lim
5/11/18

Minimum Spanning Tree (5A)

Cut property examples

The cut: MSTT:

ONONOINGCRONG
OO OO

S V-S

This figure shows the cut property of MSTs. T is the only &
MST of the given graph. IfS = {A,B,D,E}, thus V-S = {C,F},
then there are 3 possibilities of the edge across the cut(S,V-
S), they are edges BC, EC, EF of the original graph. Then, e is
one of the minimum-weight-edge for the cut, therefore S v
{e} is part of the MST T.

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Minimum Spanning Tree (5A) S Young Wor L2

Borlvka's algorithm

Input: A graph G whose edges have distinct weights
Initialize a forest F to be a set of one-vertex trees,
one for each vertex of the graph.
While F has more than one component:
Find the connected components of F and
label each vertex of G by its component
Initialize the cheapest edge for each component to "None"
For each edge uv of G:
If u and v have different component labels:
If uv is cheaper than the cheapest edge
for the component of u:
Set uv as the cheapest edge for the component of u
If uv is cheaper than the cheapest edge
for the component of v:
Set uv as the cheapest edge for the component of v
For each component whose cheapest edge
IS not "None";
Add its cheapest edge to F
Output: F is the minimum spanning forest of G.

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Minimum Spanning Tree (5A) 9 Young Won L

Borlvka's algorithm examples (1)

Image components Description
A S sc | {A}
{B}
! {C} This is our original weighted graph. The numbers
o {D} near the edges indicate their weight. Initially, every
- {E} vertex by itself is a component (blue circles).

S [{F}
G | {G}

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Minimum Spanning Tree (5A) 10 Young Won L

Borlvka's algorithm examples (2)

In the first iteration of the outer loop, the minimum
weight edge out of every component is added. Some
edges are selected twice (AD, CE). Two components
remain.

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Young Won Lim

Minimum Spanning Tree (5A) 11 5/11/18

Borlivka's algorithm examples (3)

In the second and final iteration, the minimum
weight edge out of each of the two remaining
components is added. These happen to be the same
edge. One component remains and we are done. The
edge BD is not considered because both endpoints
are in the same component.

{A.B,.C.D,E,F.G}

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

12 Young Won Lim
5/11/18

Minimum Spanning Tree (5A)

Borlivka's algorithm examples (4)

18 16
12 30

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/20-mst.pdf

Minimum Spanning Tree (5A) 13 Young Won L

Kruskal's algorithm

KRUSKAL(G):

1A=0

2 foreachv € G.V:

3 MAKE-SET(v)

4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5 if FIND-SET(u) # FIND-SET(v):

6 A=AU {(u, v)}

7 UNION(u, v)

8 return A

Scan all edges in increasing weight order; if an edge is safe, add it to A

https://en.wikipedia.org/wiki/Kruskal%?27s_algorithm

Young Won Lim

Minimum Spanning Tree (5A) 14 5/11/18

Kruskal's algorithm examples (1)

(G)s5, 6,7, 7,8, 89, 9, 11, 15

AD and CE are the shortest edges, with length 5, and AD has been
arbitrarily chosen, so it is highlighted.

(GXs) 6, 7,7, 8 8 9,9, 11, 15

CE is now the shortest edge that does not form a cycle, with length 5,
so it is highlighted as the second edge.

https://en.wikipedia.org/wiki/Kruskal%?27s_algorithm

Minimum Spanning Tree (5A) 15 Young Won L

Kruskal's algorithm examples (2)

c (G)5)(6) 7, 7,8 8 9,9, 11, 15]

The next edge, DF with length 6, is highlighted using much the same
method.

(G)Y5)(6)7) 7, 8, 8 % 9, 11, 15

The next-shortest edges are AB and BE, both with length 7. AB is
chosen arbitrarily, and is highlighted. The edge BD has been
highlighted in red, because there already exists a path (in green)
between B and D, so it would form a cycle (ABD) if it were chosen.

https://en.wikipedia.org/wiki/Kruskal%?27s_algorithm

Minimum Spanning Tree (5A) 16 Young Won L

Kruskal's algorithm examples (3)

¢ (BOED@X XX o, 11, 15)

The process continues to highlight the next-smallest edge, BE with
length 7. Many more edges are highlighted in red at this stage: BC
because it would form the loop BCE, DE because it would form the
loop DEBA, and FE because it would form FEBAD.

(OO X X X 6) X X

Finally, the process finishes with the edge EG of length 9, and the
minimum spanning tree is found.

https://en.wikipedia.org/wiki/Kruskal%?27s_algorithm

Minimum Spanning Tree (5A) 17 Young Won L

Kruskal's algorithm examples (4)

[2,3,4,5,8,10,12,14,16, 18,26, 30|

18 16

8 5 8 5
18 q 16 18 b
4 26 4 a 26 4 ' 26

16 1

oo

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/20-mst.pdf

Minimum Spanning Tree (5A) 18 Young Won L

Prim's algorithm

a greedy algorithm that finds a minimum spanning tree
for a weighted undirected graph.

operates by building this tree one vertex at a time,
from an arbitrary starting vertex,

at each step adding the cheapest possible connection
from the tree to another vertex.

Repeatedly add a safe edge to the tree

1. Initialize a tree with a single vertex,
chosen arbitrarily from the graph.
2. Grow the tree by one edge:
of the edges that connect the tree to vertices
not yet in the tree, find the minimum-weight edge,
and transfer it to the tree.
3. Repeat step 2 (until all vertices are in the tree).

https://en.wikipedia.org/wiki/Prim%27s_algorithm

Minimum Spanning Tree (5A) 19 Young Won L

Prim's algorithm

1. Associate with each vertex v of the graph
a number C[v] (the cheapest cost of a connection to v)
and an edge E[v] (the cheapest edge).
Initial values: C[v] = +o, EJ[v] = flag for no connection

2. Initialize an empty forest F and a set Q of vertices
that have not yet been included in F

3. Repeat the following steps until Q is empty:
a. Find and remove a vertex v from Q
having the minimum possible value of C[v]
b. Add v to F and, if E[v] is not the special flag value,
also add E[v] to F
c. Loop over the edges vw connecting v to other
vertices w. For each such edge, if w still belongs to Q
and vw has smaller weight than C[w],
perform the following steps:
1) Set C[w] to the cost of edge vw
II) Set E[w] to point to edge vw.
Return F

https://en.wikipedia.org/wiki/Prim%27s_algorithm

Minimum Spanning Tree (5A) 20 Young Won L

Prim's algorithm

Prim's algorithm starting at vertex A.
l In the third step, edges BD and AB both have weight 2,

so BD is chosen arbitrarily.
After that step, AB is no longer a candidate for addition to

the tree because it links two nodes
that are already in the tree.

https://en.wikipedia.org/wiki/Kruskal%?27s_algorithm

Young Won Lim

Minimum Spanning Tree (5A) 21 5/11/18

Prim's algorithm examples (1)

Not | In the | In the

Image Description ssen | graph | tree

This is the initial weighted graph. It is not a tree, since to be a
tree itis required that there are no cycles, and in this case there ABE
is. The numbers near the edges indicate the weight. None of the |C, G |
edges is marked, and vertex D has been chosen arbitrarily as
the starting point.

The second vertexisclosesttoD : Ais5 away,B is9,E is 15,
and F is 6. Of these, 5 is the smallest value, so we markthe DA |C,G B,E,F |A,D

edge.

(5,6,9,15)

https://es.wikipedia.org/wiki/Algoritmo_de_Prim

Minimum Spanning Tree (5A) 22 Young Won L

Prim's algorithm examples (2)

Not | In the | In the

Image Description seen | graph | tree

5 5) .
/ \’\ The next vertex to choose is the closestto D or A. B is 9 away

from D and 7 away from A ,Eisat15,and F is at 6. 6 is the C B,E,G |A,D,F
smallest value, so we mark the vertex F and the edge DF .

The algorithm continues. The vertex B , which is at a distance of
7 from A , is the next one marked. At this point the edge DB is null CEG A,D,F,
marked in red because its two ends are already in the tree and B

therefore can not be used.

https://es.wikipedia.org/wiki/Algoritmo_de_Prim

Minimum Spanning Tree (5A) 23 Young Won Lim

5/11/18

Prim's algorithm examples (3)

inace Description Not | In the | In the
0 seen | graph | tree
Here you have to choose between C , E and G. C is 8 away from
B,Eis7 awayfrom B, and Gis 11 away from F. E is closer, so A D.F
we mark the vertex E and the edge EB . Two other edges were null C,G B‘ E‘ '
marked in red because both vertices that join were added to the ’
tree.
Only € and G are available. Cis 5 away from E , and G is 9 away
.) A,D,F,
from E. Choose C, and mark with the arc EC. The BC arc is also | null G
. B,E,C
marked with red.
G is the only outstanding vertex, and itis closerto Ethanto F, AD.F
so EG is added to the tree. All vertices are already marked, the null null B‘ e ' c'
minimum expansion tree is shown in green. In this case with a G‘ o
weight of 39.
https://es.wikipedialorg/wiki/Algoritmo_de_F

rim

Minimum Spanning Tree (5A) 24

Young Won Lim

5/11/18

Prim's algorithm examples (4)

[2,3,4,5,8,10,12,14,16, 18,26, 30|

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/20-mst.pdf

Minimum Spanning Tree (5A) 25 Young Won L

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/11/18

Tree Traversal (1A)

Young Won Lim
5/11/18

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Young Won Lim
5/11/18

Infix, Prefix, Postfix Notations

Infix Notation

Prefix Notation

Postfix Notation

A+B +AB AB +
(A+B)*C *+ABC AB+C*
A* (B + C) *A+BC ABC +*
A/B+C/D +/AB/CD AB/CD/+
(A+B)*C)-D —*+ABCD AB+C*D-—

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

Tree (10A)

Young Won Lim
5/11/18

Infix, Prefix, Postfix Notations and Binary Trees

Infix Notation Prefix Notation Postfix Notation 0
A+B +AB AB +

(A+B)*C *+ABC AB+C* e e
A* (B + C) *A+BC ABC+*

A/B+C/D +/AB/CD AB/CD/+

(A+B)*C)-D -*+ABCD AB+C*D -

Young Won Lim

Tree (10A) 5 5/11/18

In-Order, Pre-Order, Post-Order Binary Tree Traversals

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

aa

pre-order :" jpost—order (a*(b-c))+(d/e)
a*b-c+d/e Infix notation
+*a—-bc/de Prefix notation
in-order abc-—*de/+ Postfix notation

https://en.wikipedia.org/wiki/Morphism

Tree (10A) 6 Young Wan Lim

Pre-Order Binary Tree Traversals

°0

(@*(b-c))+(d/e)

a*b-c+d/e Infix notation
+*a—-bc/de Prefix notation
abc—-*del/+ Postfix notation

https://en.wikipedia.org/wiki/Morphism

Tree (10A) 7 Young Wan Lim

In-Order Binary Tree Traversals

(@*(b-c))+(d/e)

a*b-c+d/e Infix notation
+*a—-bc/de Prefix notation
abc—-*del/+ Postfix notation

https://en.wikipedia.org/wiki/Morphism

Tree (10A) 8 Young Wan Lim

Post-Order Binary Tree Traversals

C
ece 00

o lon

(@*(b-c))+(d/e)

a*b-c+d/e Infix notation
+*a—-bc/de Prefix notation
abc—-*del/+ Postfix notation

https://en.wikipedia.org/wiki/Morphism

Tree (10A) o] Young Wan Lim

Tree Traversal

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

pre-order ! ‘post-order

in-order

https://en.wikipedia.org/wiki/Morphism

Tree (1OA) 10 Young Won Lim

5/11/18

Pre-Order

pre-order function
Check if the current node is empty / null.
Display the data part of the root (or current node).
Traverse the left subtree by recursively calling the pre-order function.
Traverse the right subtree by recursively calling the pre-order function.

FBADCEGIH

pre-order ! ‘post-order

~

in-order

https://en.wikipedia.org/wiki/Morphism

Tree (1OA) 11 Young Won Lim

5/11/18

INn-Order

in-order function
Check if the current node is empty / null.
Traverse the left subtree by recursively calling the in-order function.
Display the data part of the root (or current node).
Traverse the right subtree by recursively calling the in-order function.

ABCDEFGHI

pre-order ! ‘post-order

~

in-order

https://en.wikipedia.org/wiki/Morphism

Tree (1OA) 12 Young Won Lim

5/11/18

Post-Order

post-order function
Check if the current node is empty / null.
Traverse the left subtree by recursively calling the post-order function.

Traverse the right subtree by recursively calling the post-order function.
Display the data part of the root (or current node).

ACEDBHIGH

pre-order ! ‘post-order

~

in-order

https://en.wikipedia.org/wiki/Morphism

Young Won Lim

Tree (10A) 13 5/11/18

Recursive Algorithms

preorder(node) inorder(node) postorder(node)
if (node = null) if (node = null) if (node = null)
return return return
visit(node) inorder(node.left) postorder(node.left)
preorder(node.left) visit(node) postorder(node.right)
preorder(node.right) inorder(node.right) visit(node)

https://en.wikipedia.org/wiki/Tree_traversal

Tree (1OA) 14 Young Won Lim

5/11/18

lterative Algorithms

iterativePreorder(node) iterativelnorder(node)
if (node = null) S < empty stack
return

s «— empty stack while (not s.isEmpty() or

S.push(node) node # null)
if (node # null)
while (not s.isEmpty()) s.push(node)
node — s.pop() node < node.left
visit(node) else
node < s.pop()
visit(node)
if (node.right # null) node — node.right

s.push(node.right)
if (node.left # null)
s.push(node.left)

https://en.wikipedia.org/wiki/Tree_traversal

iterativePostorder(node)
S < empty stack
lastNodeVisited < null

while (not s.isEmpty() or node # null)
if (node # null)
s.push(node)
node < node.left
else
peekNode « s.peek()

if (peekNode.right # null and
lastNodeVisited # peekNode.right)
node — peekNode.right

else
visit(peekNode)
lastNodeVisited — s.pop()

Tree (10A) 15

Young Won Lim
5/11/18

Stack

S Push
4 m;\
"y :
3
2
1

o
Amwhm«/

3 Pus
2\\ m;\ 3
Push 2 2
1 1 1

> 6
/ Pop _—»5

5 / Pop > 4

4 4 / Pop >3

3 3 3 /%p //>2
2 2 2 2 Pop
1 1 1 1 1

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Tree (1OA) 16 Young Won Lim

5/11/18

Queue

Back Front

Dequeue
Enqueue

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)#/media/File:Data_Queue.sv
9

Tree (1OA) 17 Young Won Lim

5/11/18

Search Algorithms

DFS (Depth First Search) BFS (Breadth First Search)

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

Tree (1OA) 18 Young Won Lim

5/11/18

DFS Algorithm

A recursive implementation of DFS:

procedure DFS(G,v):
label v as discovered
for all edges from v to w in G.adjacentEdges(v) do
If vertex w is not labeled as discovered then
recursively call DFS(G,w)

A non-recuUrsive implementation of DFS:

procedure DFS-iterative(G,v):
let S be a stack
S.push(v)
while S is not empty
v = S.pop()
If v is not labeled as discovered:
label v as discovered

for all edges from v to w in G.adjacentEdges(v) do

S.push(w)

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

Tree (10A) 19

DFS (Depth First Search)

21N\

2 7 8

/1 N

3 6 9 (12
/_rl> LN\

100 11

Young Won Lim
5/11/18

Search Algorithms

DFS (Depth First Search) BFS (Breadth First Search)

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

Tree (1OA) 20 Young Won Lim

5/11/18

BFS Algorithm

Breadth-First-Search(Graph, root):

create empty set S BFS (Breadth First Search)
create empty queue Q
1
add rootto S
Q.enqueue(root) 2) (3) (4
while Q is not empty: 5 (6 T &
current = Q.dequeue() 97 10 11 12

if current is the goal:
return current
for each node n that is adjacent to current:
if nisnotin S:
addnto S
n.parent = current
Q.enqueue(n)

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

Tree (1OA) 21 Young Won Lim

5/11/18

INn-Order

pre-order ! :post-order

in-order

‘s
A Y
‘
1

‘post-order

24

pre-order

- G ° Q

Tree (1OA) 22 Young Won Lim

5/11/18

Ternary Tree

a-b-e-j-k-n-o-p-f-c-d-g-I-m-h-i e

o

Tree (1OA) 23 Young Won Lim

5/11/18

INn-Order

j-e-n-k-o-p-b-f-a-c-I-g-m-d-h-i e

Tree (1OA) 24 Young Won Lim

5/11/18

Post-Order

j-n-0-p-k-e-f-b-c-I-m-g-h-i-d-a e

Tree (1OA) 25 Young Won Lim

5/11/18

Ternary

Ternary

Etymology
Late Latin ternarius (“consisting of three things”), from terni (“three each”).
Adjective

ternary (not comparable)
Made up of three things; treble, triadic, triple, triplex
Arranged in groups of three
(mathematics) To the base three [quotations V]
(mathematics) Having three variables

https://en.wiktionary.org/wiki/ternary

The sequence continues with quaternary, quinary, senary, septenary, octonary,
nonary, and denary, although most of these terms are rarely used. There's no word
relating to the number eleven but there is one that relates to the number twelve:
duodenary.

https://en.oxforddictionaries.com/explore/what-comes-after-primary-secondary-tertiary

Tree (1OA) 26 Young Won Lim

5/11/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
5/11/18

