
Young Won Lim
4/26/18

Eulerian Cycle (2A)

Walk : vertices may repeat, edges may repeat (closed or open)

Trail: vertices may repeat, edges cannot repeat (open)

circuit : vertices my repeat, edges cannot repeat (closed)

path : vertices cannot repeat, edges cannot repeat (open)

cycle : vertices cannot repeat, edges cannot repeat (closed)

Young Won Lim
4/26/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

1) Undirected Graphs

2) Directed Graphs

Vertex, Vertices

Edge, Edges

Graph (5A) 3 Young Won Lim
4/26/18

Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

a necessary condition
for the existence of Eulerian cycles is
that all vertices in the graph have an even degree

that connected graphs with all vertices of even degree
have an Eulerian circuit.

Graph (5A) 4 Young Won Lim
4/26/18

Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

3

3

3

5

4 4

4

2

4

4

All odd degree vertices

All even degree vertices

degree

Graph (5A) 5 Young Won Lim
4/26/18

Euler Cycle

en.wikipedia.org

ABCDEFGHIJK

K

J

G

H

F

B

E

D

A

C I

Eulerian Cycle

Cycle: Vs = Vt
start, terminal

Path : Vs ----> Vt
Vs != Vt

Graph (5A) 6 Young Won Lim
4/26/18

Eulerian Cycles of Undirected Graphs

https://en.wikipedia.org/wiki/Eulerian_path

An undirected graph has an Eulerian cycle
if and only if every vertex has even degree,
and all of its vertices with nonzero degree
belong to a single connected component.

An undirected graph can be
decomposed into edge-disjoint cycles
if and only if all of its vertices have even degree.

So, a graph has an Eulerian cycle
if and only if it can be decomposed
into edge-disjoint cycles
and its nonzero-degree vertices
belong to a single connected component.

4 4

4

2

4

4

Graph (5A) 7 Young Won Lim
4/26/18

Edge Disjoint Cycle Decomposition

K

J

G

H

F

B

E

D

A

C I

Graph (5A) 8 Young Won Lim
4/26/18

Eulerian Paths of Undirected Graphs

https://en.wikipedia.org/wiki/Eulerian_path

An undirected graph has an Eulerian path
if and only if exactly zero or two vertices have odd degree,
and all of its vertices with nonzero degree
belong to a single connected component.

E. C.

Graph (5A) 9 Young Won Lim
4/26/18

Eulerian Cycles of Directed Graphs

https://en.wikipedia.org/wiki/Eulerian_path

A directed graph has an Eulerian cycle
if and only if every vertex has equal in degree and out degree,
and all of its vertices with nonzero degree
belong to a single strongly connected component.

Equivalently, a directed graph has an Eulerian cycle
if and only if it can be decomposed
into edge-disjoint directed cycles
and all of its vertices with nonzero degree
belong to a single strongly connected component.

Graph (5A) 10 Young Won Lim
4/26/18

Eulerian Paths of Directed Graphs

https://en.wikipedia.org/wiki/Eulerian_path

A directed graph has an Eulerian path
if and only if at most one vertex has (out-degree) − (in-degree) = 1,
at most one vertex has (in-degree) − (out-degree) = 1,
every other vertex has equal in-degree and out-degree,
and all of its vertices with nonzero degree belong to a single connected
component of the underlying undirected graph.

Graph (5A) 11 Young Won Lim
4/26/18

Seven Bridges of Königsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

The problem was to devise a walk through the city that
would cross each of those bridges once and only once. Euler Cycles (X)

Euler Path (X)

Euler Cycle All even degree vertices
 = 0 odd degree vertices

Euler Path Only 0 or 2 odd degree vertices

Graph (5A) 12 Young Won Lim
4/26/18

Seven Bridges of Königsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

3

5

3

3

3

5

4

4

Eulerian Path

A B CA

D

E FE G

A B CA

D

E FE G

H

AEHGFDCB

7Bridges Problem 8Bridges Problem

E Cycle (X)
E Path (X)

All - Odd Deg - Vertices

Graph (5A) 13 Young Won Lim
4/26/18

Seven Bridges of Königsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

4

5

5

4

4

6

6

4

Eulerian CycleEulerian Path

A B CA

D

E FE G

A B CA

D

E FE G

HH

I
I

J

EHGFDCBAI AEHGFDCBAJI

9 Bridges Problem 10 Bridges Problem

Young Won Lim
4/26/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
4/26/18

Hamiltonian Cycle (3A)

Young Won Lim
4/26/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Hamiltonian Cycles (3A) 3 Young Won Lim
4/26/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path

A Hamiltonian path is a path
in an undirected or directed graph
that visits each vertex exactly once.

A Hamiltonian cycle is
a Hamiltonian path that is a cycle.

the Hamiltonian path problem is NP-complete.

Hamiltonian Cycles (3A) 4 Young Won Lim
4/26/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 5 Young Won Lim
4/26/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path

Hamiltonian Cycles (3A) 6 Young Won Lim
4/26/18

Complete Graphs and Cycle Graphs

https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Cycle_graph

Hamiltonian Cycles (3A) 7 Young Won Lim
4/26/18

Complete Graphs

https://en.wikipedia.org/wiki/Complete_graph

Hamiltonian Cycles (3A) 8 Young Won Lim
4/26/18

Tournament Graphs

https://en.wikipedia.org/wiki/Tournament_(graph_theory

Hamiltonian Cycles (3A) 9 Young Won Lim
4/26/18

Platonic Solid Graphs

https://en.wikipedia.org/wiki/Platonic_solid

Hamiltonian Cycles (3A) 10 Young Won Lim
4/26/18

Hamiltonian Cycles – Properties (1)

https://en.wikipedia.org/wiki/Hamiltonian_path

Any Hamiltonian cycle can be converted
to a Hamiltonian path by removing one of its edges,

but a Hamiltonian path can be extended to
Hamiltonian cycle only if its endpoints are adjacent.

All Hamiltonian graphs are biconnected, but a
biconnected graph need not be Hamiltonian

Hamiltonian Graphs Biconnected Graphs

Hamiltonian Cycles (3A) 13 Young Won Lim
4/26/18

Hamiltonian Cycles – Properties (2)

https://en.wikipedia.org/wiki/Hamiltonian_path

An Eulerian graph G :
a connected graph in which every vertex has even degree

An Eulerian graph G necessarily has an Euler path,
a closed walk passing through each edge of G exactly once.

This Eulerian path corresponds to a Hamiltonian cycle in
the line graph L(G), so the line graph of every Eulerian
graph is Hamiltonian.

Line graphs may have other Hamiltonian cycles that do not
correspond to Euler paths.

The line graph L(G) of every Hamiltonian graph G is itself
Hamiltonian, regardless of whether the graph G is Eulerian.

Hamiltonian Cycles (3A) 14 Young Won Lim
4/26/18

Line Graphs

https://en.wikipedia.org/wiki/Line_graph

In the mathematical discipline of graph theory, the line graph
of an undirected graph G is another graph L(G) that
represents the adjacencies between edges of G.

Given a graph G, its line graph L(G) is a graph such that

● each vertex of L(G) represents an edge of G; and
● two vertices of L(G) are adjacent if and only if their

corresponding edges share a common endpoint ("are
incident") in G.

That is, it is the intersection graph of the edges of G,
representing each edge by the set of its two endpoints.

Hamiltonian Cycles (3A) 15 Young Won Lim
4/26/18

Line Graphs Examples

https://en.wikipedia.org/wiki/Line_graph

Young Won Lim
4/26/18

References

[1] http://en.wikipedia.org/
[2]

Young Won Lim
4/26/18

Shortest Path Problem (4A)

Young Won Lim
4/26/18

 Copyright (c) 2015 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Shortest Path Problem (4A) 3 Young Won Lim
4/26/18

Shortest Path Problem

https://en.wikipedia.org/wiki/Shortest_path_problem

the shortest path problem is the problem of finding a path
between two vertices (or nodes) in a graph such that the
sum of the weights of its constituent edges is minimized.

Shortest Path Problem (4A) 4 Young Won Lim
4/26/18

Types of Shortest Path Problems

https://en.wikipedia.org/wiki/Shortest_path_problem

The single-pair shortest path problem:
to find shortest paths from a source vertex v to a
destination vertex w in a graph

The single-source shortest path problem:
to find shortest paths from a source vertex v to all other
vertices in the graph.

The single-destination shortest path problem:
to find shortest paths from all vertices in the directed
graph to a single destination vertex v. This can be
reduced to the single-source shortest path problem by
reversing the arcs in the directed graph.

The all-pairs shortest path problem:
to find shortest paths between every pair of vertices v, v'
in the graph.

Shortest Path Problem (4A) 5 Young Won Lim
4/26/18

Dijkstra’s Algorithm Example Summary

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

U={1,2,3,4,5,6,7,8} U={2,3,4,5,6,7,8} U={3,4,5,6,7,8}

U={4,5,6,7,8}

Shortest Path Problem (4A) 6 Young Won Lim
4/26/18

Dijkstra’s Algorithm Example (1)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

U={1,2,3,4,5,6}
C= 1
N={2,3,4}

Shortest Path Problem (4A) 7 Young Won Lim
4/26/18

Dijkstra’s Algorithm Example (2)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

U={1,2,3,4,5,6}
C= 1
N={2,3,4}

U={2,3,4,5,6}
C= 2 (min=7)
N={3,4}

Shortest Path Problem (4A) 8 Young Won Lim
4/26/18

Dijkstra’s Algorithm Example (3)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif U={3,4,5,6}
C= 3 (min=9)
N={4,6}

Shortest Path Problem (4A) 9 Young Won Lim
4/26/18

Dijkstra’s Algorithm Example (4)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Shortest Path Problem (4A) 10 Young Won Lim
4/26/18

Dijkstra’s Algorithm Example (5)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

U={4,5,6}
C= 6 (min=11)
N={5}

U={4,5}
C= 5 (min=20)
N={4}

Shortest Path Problem (4A) 11 Young Won Lim
4/26/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

U={a,b,c,d,e,f,g,z}
C=a (min=0)
N={b,f}

new C

U={a,b,c,d,e,f,g,z}
C=a (min=0)
N={b,f}

U={f,b,c,d,e,g,z}
C=f (min=1)
N={d,g}

new C

U={f,b,c,d,e,g,z}
C=f (min=1)
N={d,g}

U={b,c,d,e,g,z}
C=b (min=2)
N={c,d,e}

new C

U={b,c,d,e,g,z}
C=b (min=2)
N={c,d,e}

U={c,d,e,g,z}
C=c (min=4)
N={e,z}

new C

U={c,d,e,g,z}
C=c (min=4)
N={e,z}

U={d,e,g,z}
C=d (min=4)
N={e}new C

U={d,e,g,z}
C=d (min=4)
N={e}

U={e,g,z}
C=z (min=5)
N={g}

new C

U={e,g}
C=z (min=5)
N={g}

U={e,g}
C=e (min=6)
N={g}

new C

U={e,g}
C=e (min=6)
N={g}

U={e,g}
C=e (min=6)
N={g}

U={e,g}
C=e (min=6)
N={g}

Shortest Path Problem (4A) 12 Young Won Lim
4/26/18

Dijkstra’s Algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Let the node at which we are starting be called the initial
node. Let the distance of node Y be the distance from
the initial node to Y. Dijkstra's algorithm will assign some
initial distance values and will try to improve them step
by step.

1. Mark all nodes unvisited. Create a set of all the
unvisited nodes called the unvisited set.

2. Assign to every node a tentative distance value: set
it to zero for our initial node and to infinity for all other
nodes. Set the initial node as current.

Shortest Path Problem (4A) 13 Young Won Lim
4/26/18

Dijkstra’s Algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

3. For the current node, consider all of its unvisited
neighbors and calculate their tentative distances
through the current node. Compare the newly calculated
tentative distance to the current assigned value and
assign the smaller one.

For example, if the current node A is marked with a
distance of 6, and the edge connecting it with a neighbor
B has length 2, then the distance to B through A will be 6
+ 2 = 8. If B was previously marked with a distance
greater than 8 then change it to 8. Otherwise, keep the
current value. A

6 B2

8

Shortest Path Problem (4A) 14 Young Won Lim
4/26/18

Dijkstra’s Algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

4. When we are done considering all of the neighbors
of the current node, mark the current node as visited
and remove it from the unvisited set. A visited node
will never be checked again.

5. Move to the next unvisited node with the smallest
tentative distances and repeat the above steps which
check neighbors and mark visited.

Shortest Path Problem (4A) 15 Young Won Lim
4/26/18

Dijkstra’s Algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

6. If the destination node has been marked visited
(when planning a route between two specific nodes) or if
the smallest tentative distance among the nodes in the
unvisited set is infinity (when planning a complete
traversal; occurs when there is no connection between
the initial node and remaining unvisited nodes), then
stop. The algorithm has finished.

7. Otherwise, select the unvisited node that is marked
with the smallest tentative distance, set it as the new
"current node", and go back to step 3.

Shortest Path Problem (4A) 16 Young Won Lim
4/26/18

Dijkstra’s Algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph: // Initialization
 6 dist[v] ← INFINITY // Unknown distance from source to v
 7 prev[v] ← UNDEFINED // Previous node in optimal path from source
 8 add v to Q // All nodes initially in Q (unvisited nodes)
 9
10 dist[source] ← 0 // Distance from source to source
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u] // Node with the least distance
14 // will be selected first
15 remove u from Q
16
17 for each neighbor v of u: // where v is still in Q.
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]: // A shorter path to v has been found
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

Shortest Path Problem (4A) 17 Young Won Lim
4/26/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Young Won Lim
4/26/18

References

[1] http://en.wikipedia.org/
[2]

