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Eulerian Cycle (2A)

Walk : vertices may repeat, edges may repeat (closed or open)

Trail: vertices may repeat, edges cannot repeat (open)

circuit : vertices my repeat, edges cannot repeat (closed)

path : vertices cannot repeat, edges cannot repeat (open)

cycle : vertices cannot repeat, edges cannot repeat (closed)



Young Won Lim
4/26/18

 Copyright (c)  2015 – 2018  Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, 
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and 
no Back-Cover Texts.  A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

1) Undirected Graphs

2) Directed Graphs
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Edge, Edges
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Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path

visits every edge exactly once

a necessary condition 
for the existence of Eulerian cycles is 
that all vertices in the graph have an even degree

that connected graphs with all vertices of even degree 
have an Eulerian circuit.
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Euler Cycle

https://en.wikipedia.org/wiki/Eulerian_path
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Euler Cycle

en.wikipedia.org
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Eulerian Cycle

Cycle: Vs = Vt
start, terminal

Path : Vs ----> Vt
Vs != Vt 
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Eulerian Cycles of Undirected Graphs

https://en.wikipedia.org/wiki/Eulerian_path

An undirected graph has an Eulerian cycle 
if and only if every vertex has even degree, 
and all of its vertices with nonzero degree 
belong to a single connected component.

An undirected graph can be 
decomposed into edge-disjoint cycles 
if and only if all of its vertices have even degree. 

So, a graph has an Eulerian cycle 
if and only if it can be decomposed 
into edge-disjoint cycles
and its nonzero-degree vertices
belong to a single connected component.
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Edge Disjoint Cycle Decomposition
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Eulerian Paths of Undirected Graphs

https://en.wikipedia.org/wiki/Eulerian_path

An undirected graph has an Eulerian path 
if and only if exactly zero or two vertices have odd degree, 
and all of its vertices with nonzero degree 
belong to a single connected component.

E. C.
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Eulerian Cycles of Directed Graphs

https://en.wikipedia.org/wiki/Eulerian_path

A directed graph has an Eulerian cycle 
if and only if every vertex has equal in degree and out degree, 
and all of its vertices with nonzero degree 
belong to a single strongly connected component. 

Equivalently, a directed graph has an Eulerian cycle 
if and only if it can be decomposed 
into edge-disjoint directed cycles 
and all of its vertices with nonzero degree 
belong to a single strongly connected component.
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Eulerian Paths of Directed Graphs

https://en.wikipedia.org/wiki/Eulerian_path

A directed graph has an Eulerian path 
if and only if at most one vertex has (out-degree) − (in-degree) = 1, 
at most one vertex has (in-degree) − (out-degree) = 1, 
every other vertex has equal in-degree and out-degree, 
and all of its vertices with nonzero degree belong to a single connected 
component of the underlying undirected graph.



Graph (5A) 11 Young Won Lim
4/26/18

Seven Bridges of Königsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

The problem was to devise a walk through the city that 
would cross each of those bridges once and only once. Euler Cycles (X)

Euler Path (X)

Euler Cycle        All even degree vertices
  = 0 odd degree vertices

Euler Path   Only 0 or 2 odd degree vertices
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Seven Bridges of Königsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

3

5

3

3

3

5

4

4

Eulerian Path

A B CA

D

E FE G

A B CA

D

E FE G

H

AEHGFDCB

7Bridges Problem 8Bridges Problem

E Cycle (X)
E Path   (X)

All - Odd Deg - Vertices



Graph (5A) 13 Young Won Lim
4/26/18

Seven Bridges of Königsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
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Hamiltonian Cycle (3A)
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Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path

A Hamiltonian path is a path 
in an undirected or directed graph 
that visits each vertex exactly once. 

A Hamiltonian cycle is 
a Hamiltonian path that is a cycle. 

the Hamiltonian path problem is NP-complete.



Hamiltonian Cycles (3A) 4 Young Won Lim
4/26/18

Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path
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Hamiltonian Cycles

https://en.wikipedia.org/wiki/Hamiltonian_path
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Complete Graphs and Cycle Graphs 

https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Cycle_graph
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Complete Graphs

https://en.wikipedia.org/wiki/Complete_graph
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Tournament Graphs

https://en.wikipedia.org/wiki/Tournament_(graph_theory
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Platonic Solid Graphs

https://en.wikipedia.org/wiki/Platonic_solid
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Hamiltonian Cycles – Properties (1)

https://en.wikipedia.org/wiki/Hamiltonian_path

Any Hamiltonian cycle can be converted 
to a Hamiltonian path by removing one of its edges, 

but a Hamiltonian path can be extended to 
Hamiltonian cycle only if its endpoints are adjacent.

All Hamiltonian graphs are biconnected, but a 
biconnected graph need not be Hamiltonian

Hamiltonian Graphs Biconnected Graphs
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Hamiltonian Cycles – Properties (2)

https://en.wikipedia.org/wiki/Hamiltonian_path

An Eulerian graph G :
a connected graph in which every vertex has even degree 

An Eulerian graph G necessarily has an Euler path, 
a closed walk passing through each edge of G exactly once. 

This Eulerian path corresponds to a Hamiltonian cycle in 
the line graph L(G), so the line graph of every Eulerian 
graph is Hamiltonian.

Line graphs may have other Hamiltonian cycles that do not 
correspond to Euler paths.

The line graph L(G) of every Hamiltonian graph G is itself 
Hamiltonian, regardless of whether the graph G is Eulerian.
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Line Graphs

https://en.wikipedia.org/wiki/Line_graph

In the mathematical discipline of graph theory, the line graph 
of an undirected graph G is another graph L(G) that 
represents the adjacencies between edges of G.

Given a graph G, its line graph L(G) is a graph such that

● each vertex of L(G) represents an edge of G; and
● two vertices of L(G) are adjacent if and only if their 

corresponding edges share a common endpoint ("are 
incident") in G.

That is, it is the intersection graph of the edges of G, 
representing each edge by the set of its two endpoints.
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Line Graphs Examples

https://en.wikipedia.org/wiki/Line_graph
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Shortest Path Problem (4A)
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Shortest Path Problem

https://en.wikipedia.org/wiki/Shortest_path_problem

the shortest path problem is the problem of finding a path 
between two vertices (or nodes) in a graph such that the 
sum of the weights of its constituent edges is minimized.
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Types of Shortest Path Problems

https://en.wikipedia.org/wiki/Shortest_path_problem

The single-pair shortest path problem:
to find shortest paths from a source vertex v to a 
destination vertex w in a graph

The single-source shortest path problem:
to find shortest paths from a source vertex v to all other 
vertices in the graph.

The single-destination shortest path problem:
to find shortest paths from all vertices in the directed 
graph to a single destination vertex v. This can be 
reduced to the single-source shortest path problem by 
reversing the arcs in the directed graph.

The all-pairs shortest path problem:
to find shortest paths between every pair of vertices v, v' 
in the graph.
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Dijkstra’s Algorithm Example Summary

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

U={1,2,3,4,5,6,7,8} U={2,3,4,5,6,7,8} U={3,4,5,6,7,8}

U={4,5,6,7,8}
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Dijkstra’s Algorithm Example (1)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

U={1,2,3,4,5,6}
C= 1
N={2,3,4}
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Dijkstra’s Algorithm Example (2)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

U={1,2,3,4,5,6}
C= 1
N={2,3,4}

U={2,3,4,5,6}
C= 2 (min=7)
N={3,4}
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Dijkstra’s Algorithm Example (3)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif U={3,4,5,6}
C= 3 (min=9)
N={4,6}
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Dijkstra’s Algorithm Example (4)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif
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Dijkstra’s Algorithm Example (5)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

U={4,5,6}
C= 6 (min=11)
N={5}

U={4,5}
C= 5 (min=20)
N={4}
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Hamiltonian Cycles

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif



U={a,b,c,d,e,f,g,z}
C=a (min=0)
N={b,f}

new C



U={a,b,c,d,e,f,g,z}
C=a (min=0)
N={b,f}



U={f,b,c,d,e,g,z}
C=f (min=1)
N={d,g}

new C



U={f,b,c,d,e,g,z}
C=f (min=1)
N={d,g}



U={b,c,d,e,g,z}
C=b (min=2)
N={c,d,e}

new C



U={b,c,d,e,g,z}
C=b (min=2)
N={c,d,e}



U={c,d,e,g,z}
C=c (min=4)
N={e,z}

new C



U={c,d,e,g,z}
C=c (min=4)
N={e,z}



U={d,e,g,z}
C=d (min=4)
N={e}new C



U={d,e,g,z}
C=d (min=4)
N={e}



U={e,g,z}
C=z (min=5)
N={g}

new C



U={e,g}
C=z (min=5)
N={g}



U={e,g}
C=e (min=6)
N={g}

new C



U={e,g}
C=e (min=6)
N={g}



U={e,g}
C=e (min=6)
N={g}



U={e,g}
C=e (min=6)
N={g}
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Dijkstra’s Algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

Let the node at which we are starting be called the initial 
node. Let the distance of node Y be the distance from 
the initial node to Y. Dijkstra's algorithm will assign some 
initial distance values and will try to improve them step 
by step.

1.    Mark all nodes unvisited. Create a set of all the 
unvisited nodes called the unvisited set.

2.    Assign to every node a tentative distance value: set 
it to zero for our initial node and to infinity for all other 
nodes. Set the initial node as current.
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Dijkstra’s Algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

3. For the current node, consider all of its unvisited 
neighbors and calculate their tentative distances 
through the current node. Compare the newly calculated 
tentative distance to the current assigned value and 
assign the smaller one. 

For example, if the current node A is marked with a 
distance of 6, and the edge connecting it with a neighbor 
B has length 2, then the distance to B through A will be 6 
+ 2 = 8. If B was previously marked with a distance 
greater than 8 then change it to 8. Otherwise, keep the 
current value. A

6 B2

8
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Dijkstra’s Algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

4. When we are done considering all of the neighbors 
of the current node, mark the current node as visited
and remove it from the unvisited set. A visited node 
will never be checked again.

5. Move to the next unvisited node with the smallest 
tentative distances and repeat the above steps which 
check neighbors and mark visited.
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Dijkstra’s Algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

6. If the destination node has been marked visited 
(when planning a route between two specific nodes) or if 
the smallest tentative distance among the nodes in the 
unvisited set is infinity (when planning a complete 
traversal; occurs when there is no connection between 
the initial node and remaining unvisited nodes), then 
stop. The algorithm has finished.

7. Otherwise, select the unvisited node that is marked 
with the smallest tentative distance, set it as the new 
"current node", and go back to step 3.
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Dijkstra’s Algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             // Initialization
 6          dist[v] ← INFINITY                  // Unknown distance from source to v
 7          prev[v] ← UNDEFINED            // Previous node in optimal path from source
 8          add v to Q                          // All nodes initially in Q (unvisited nodes)
 9
10      dist[source] ← 0                        // Distance from source to source
11      
12      while Q is not empty:
13 u ← vertex in Q with min dist[u] // Node with the least distance
14                                                     // will be selected first
15          remove u from Q 
16          
17          for each neighbor v of u:           // where v is still in Q.
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               // A shorter path to v has been found
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]
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Hamiltonian Cycles

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif
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