Resolution (7A)

Young Won Lim 3/23/18 Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Example B - (1)

Discrete Mathematics, Johnsonbough

Logic (7A) Resolution

Example B – (2)

$p \rightarrow q \lor r$
$p \lor \neg q$
$r \lor q$
$p \rightarrow q \lor r$
$\neg p \rightarrow \neg q$
$q \lor r$
$p \rightarrow q \lor r$
$q \rightarrow p$
$q \lor r$
$p \lor r$

Discrete Mathematics, Johnsonbough

Logic	(7A)
Resol	ution

Truth Table

р	q	r	$\neg p$	$\neg p \lor q \lor r$	р	q	r	eg q	$p \lor \neg q$	р	q	r	q∨r	
Т	Т	Т	F	Т	Т	Т	Т	F	Т	Т	Т	Т	Т	
Т	Т	F	F	T	Т	Т	F	F	Т	Т	Т	F	Т	
Т	F	Т	F	T	T	F	Т	Т	Т	Т	F	Т	Т	
Т	F	F	F	F	Т	F	F	Т	Т	Т	F	F	F	
F	T	Т	T	T	F	Т	Т	F	F	F	T	Т	Т	
F	Т	F	T	T	F	T	F	F	F	F	Т	F	T	
F	F	Т	T	Т	F	F	Т	T	Т	F	F	Т	T	
F	F	F	T	Т	F	F	F	T	Т	F	F	F	F	

р	q	r	$\neg p \lor q \lor r$	$p \lor \neg q$	q∨r	$H1 \wedge H2 \wedge H3$	$p \lor r$
Т	Т	Τ	Т	Т	T	Т	Т
Т	Т	F	Т	Т	Т	Т	T
Т	F	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F	F	Т
F	Т	Т	Т	F	Т	F	Т
F	Т	F	Т	F	Т	F	F
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	F	F	F

$$H1 = \neg p \lor q \lor r$$
$$H2 = p \lor \neg q$$
$$H3 = q \lor r$$

$$\begin{array}{rccc} H1 \wedge H2 \wedge H3 & \rightarrow & H3 \\ H1 \wedge H2 \wedge H3 & \rightarrow & H2 \\ H1 \wedge H2 \wedge H3 & \rightarrow & H1 \\ H1 \wedge H2 \wedge H3 & \rightarrow & (p \lor r) \end{array}$$

Logic (7A) Resolution

Truth Table and K-Map

р	q	r	$H1 \wedge H2 \wedge H3$	pqr	$H1 \wedge H2 \wedge H3$	pqr	$H1 \wedge H2 \wedge H3$
\overline{T}	Ť	Т	T	1 1 1	1	0 0 0	0
Т	Т	F	T	1 1 0	1	0 0 1	. 1
Т	F	Т	T	1 0 1	1	0 1 0	0
Т	F	F	F	1 0 0	0	0 1 1	0
F	T	Т	F	0 1 1	0	1 0 0	0
F	T	F	F	0 1 0	0	1 0 1	. 1
F	F	Т	Т	0 0 1	1	1 1 0	1
F	F	F	F	0 0 0	0	1 1 1	. 1

K-Map and Logic Minimization

_	00	01	11	10
0		pq r		
1		p ą r	pqr	pq r

	00	01	11	10
0				
1		q r		pq

$$\overline{p}\,\overline{q}\,r + p\,\overline{q}\,r = (\overline{p} + p)\overline{q}\,r = \overline{q}\,r$$

$$p\,q\,r + p\,q\,\overline{r} = p\,q(r + \overline{r}) = p\,q$$

Logic (7A) Resolution

K-Map : Verification

	00	01	11	10
0				
1		q r		pq

 $H1 \wedge H2 \wedge H3 \equiv \overline{q}r + pq$

р	q	r	\overline{q}	<u></u> qr	pq	$\overline{q}r + pq$
0	0	0	1	0	0	0
0	0	1	1	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	1	0	0	1	1

р	q	r	$H1 \wedge H2 \wedge H3$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic (7A) Resolution

Adding two don't care conditions

	0 0	01	11	10
0		r		
1				

	00	01	11	10
0			(г
1				1

 $q \lor r$

Adding two don't care conditions

 $p \lor r$

р

1

1

K-Map: Verification

	00	01	11	10
0		r		
1				

 $H1 \wedge H2 \wedge H3 \rightarrow p \vee r$

р	q	r	$p \lor r$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Logic (7A) Resolution

References

Boolean Algebra (8A)

Young Won Lim 3/30/18 Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Argument

Boolean Algebra

In mathematics and mathematical logic, **Boolean algebra** is the branch of algebra in which the values of the variables are the truth values *true* and *false*, usually denoted 1 and 0 respectively. Instead of elementary algebra where the values of the variables are numbers, and the prime operations are addition and multiplication, the main operations of Boolean algebra are the conjunction *and* denoted as Λ , the disjunction *or* denoted as ν , and the negation *not* denoted as \neg . It is thus a formalism for describing logical relations in the same way that ordinary algebra describes numeric relations.

x	y	$x \wedge y$	$x \lor y$	x	$\neg x$
0	0	0	0	0	1
1	0	0	1	1	0
0	1	0	1		
1	1	1	1		

x	y	x ightarrow y	$x\oplus y$	$x\equiv y$
0	0	1	0	1
1	0	0	1	0
0	1	1	1	0
1	1	1	0	1

https://en.wikipedia.org/wiki/Boolean_algebra

Laws (1)

Associativity of \lor :	:
Associativity of \wedge :	í
Commutativity of \lor :	
Commutativity of \wedge :	
Distributivity of \land over \lor :	:
Identity for \lor :	
Identity for \wedge :	
Annihilator for \wedge :	

x+(y+z) = (x+y)+z $x \lor (y \lor z) = (x \lor y) \lor z$ x(yz) = (xy)z $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ x+y = y+x $x \lor y = y \lor x$ xy = yz $x \wedge y = y \wedge x$ x(y+z) = xy + xz $x \wedge (y \lor z) = (x \wedge y) \lor (x \wedge z)$ x+0=x $x \vee 0 = x$ x*1=x $x \wedge 1 = x$ x*0=0 $x \wedge 0 = 0$

https://en.wikipedia.org/wiki/Boolean_algebra

Logic (8A) Boolean Algebra

6

Annihilator for \lor :	$x \lor 1 = 1$	x+1=1
Idempotence of \lor :	$x \lor x = x$	x+x=x
Idempotence of \wedge :	$x \wedge x = x$	x*x=x
Absorption 1:	$x \wedge (x \vee y) = x$	x(x+y)=x
Absorption 2:	$x \vee (x \wedge y) = x$	x+xy=x
Distributivity of \lor over \land :	$x \lor (y \land z) = (x \lor y) \land (x \lor z)$	x+yz=(x+y)(x+z)

Complementation 1	$x \wedge eg x = 0$	$x \overline{x} = 0$
Complementation 2	$x \lor eg x = 1$	$x + \overline{x} = 1$
-		
De Morgan 1	$ eg x \wedge eg y = eg (x \lor y)$	$\overline{x}\overline{y} = \overline{(x+y)}$
${ m De Morgan } 2$	$ eg x \lor eg y = eg (x \land y)$	$\overline{x} + \overline{y} = \overline{(x \ y)}$

https://en.wikipedia.org/wiki/Boolean_algebra

Digital logic is the application of the Boolean algebra of 0 and 1 to electronic hardware consisting of logic gates connected to form a circuit diagram. Each gate implements a Boolean operation, and is depicted schematically by a shape indicating the operation. The shapes associated with the gates for conjunction (AND-gates), disjunction (OR-gates), and complement (inverters) are as follows.^[17]

The lines on the left of each gate represent input wires or *ports*. The value of the input is represented by a voltage on the lead. For so-called "active-high" logic, 0 is represented by a voltage close to zero or "ground", while 1 is represented by a voltage close to the supply voltage; active-low reverses this. The line on the right of each gate represents the output port, which normally follows the same voltage conventions as the input ports.

https://en.wikipedia.org/wiki/Boolean_algebra

https://en.wikipedia.org/wiki/Logic_gate

https://en.wikipedia.org/wiki/Logic_gate

NAND, NOR Gates

https://en.wikipedia.org/wiki/Logic_gate

XOR, XNOR Gates

https://en.wikipedia.org/wiki/Logic_gate

CMOS Logic Gates

https://en.wikipedia.org/wiki/CMOS

Identity and Null Element Theorem

Distributive

$$x \cdot (y + z) = x \cdot y + x \cdot z \qquad \neq x \cdot y + z$$

This parenthesis cannot be deleted

$$x + (y \cdot z) = (x + y) \cdot (x + z) = x + y \cdot z$$

This parenthesis can be deleted

Operator precedence : • > +

https://en.wikiversity.org/wiki/Discrete_Mathematics_in_plain_view#Algorithms

Logic (8A)
Boolean Algebra

Inclusion

https://en.wikiversity.org/wiki/Discrete_Mathematics_in_plain_view#Algorithms

Logic (8A)
Boolean Algebra

Inclusion

https://en.wikiversity.org/wiki/Discrete_Mathematics_in_plain_view#Algorithms

Logic (8A) Boolean Algebra

17

Young Won Lim 3/30/18

Eliminate

$$x \cdot (\overline{x} + y) = x y$$

$$x \cdot (\overline{x} + y) = x \cdot \overline{x} + x \cdot y$$

$$= 0 + x \cdot y$$

$$= x \cdot y$$

$$x + \overline{x} y = x + y$$

$$x + \overline{x} y = (x + \overline{x}) \cdot (x + y)$$

$$= 1 \cdot (x + y)$$

$$= x + y$$

https://en.wikiversity.org/wiki/Discrete_Mathematics_in_plain_view#Algorithms

y

 $\overline{x} + y$

Logic (8A) Boolean Algebra

Young Won Lim 3/30/18

References

Boolean Functions (8B)

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Truth Table

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

All possible input cases

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

4

All possible input cases using **minterms**

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

For the output of an **and** gate to be 1, all inputs must be 1
Naming **minterms**

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

index

m_0	=	$\bar{x} \bar{y} \bar{z} = 1$
m_1	=	$\bar{x} \bar{y} z = 1$
<i>m</i> ₂	=	$\bar{x} y \bar{z} = 1$
<i>m</i> ₃	=	$\bar{x} y z = 1$
m_4	=	$x \bar{y} \bar{z} = 1$
m_5	=	$x \bar{y} z = 1$
m_6	=	$x y \overline{z} = 1$
<i>m</i> ₇	=	x y z = 1

Computing **minterms**

$$m_5 = x \bar{y} z$$

Truth Table and **minterms** (1)

Truth Table and **minterms** (2)

Truth Table and MAXterms (1)

Truth Table and MAXterms (2)

Maxterm and minterm Conditions

Boolean functions defined by a truth table

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

All possible combination of inputs

When the output becomes 1

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

All possible combination of inputs

Function output values and minterms

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

All possible combination of inputs

Mapping Set Diagram

Boolean function definition using **minterms**

Boolean Function with **minterms** (1)

Boolean Function with **minterms** (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

For the output of an **or** gate to be 1, at least one must be 1

Logic (8B)
Boolean Functions

Boolean Function with **minterms** (3)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

combination of inputs

The output F becomes 1,
either
$$m_1=1$$
 or $m_3=1$ or $m_4=1$
 $m_1 + m_3 + m_4=1$ \swarrow $F = 1$
 \Leftrightarrow $F = m_1 + m_3 + m_4$
The output F becomes 0,
either $m_0=1$ or $m_2=1$ or $m_5=1$ or $m_6=1$ or m_7
 $m_0+m_2+m_5+m_6+m_7=1$ \swarrow $F = 0$
 \Leftrightarrow $\overline{F} = m_0+m_2+m_5+m_6+m_7$

For the output of an **or** gate to be 1, at least one must be 1

=1

Boolean Function with **Maxterms** (1)

Logic (8B) Boolean Functions

21

Boolean Function with **Maxterms** (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

All possible combination of inputs

For the output of an **and** gate to be 0, at least one input must be 0

Boolean Function with **Maxterms** (2)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

All possible combination of inputs

The output F becomes 0, either $M_0=0$ or $M_2=0$ or $M_5=0$ or $M_6=0$ or $M_7=0$ $M_0 \cdot M_2 \cdot M_5 \cdot M_6 \cdot M_7=0$ $\swarrow F = 0$ $\iff F = M_0 \cdot M_2 \cdot M_5 \cdot M_6 \cdot M_7$ The output F becomes 1, either $M_1=0$ or $M_3=0$ or $M_4=0$ $M_1 \cdot M_3 \cdot M_4=0$ $\swarrow F = 1$

 $\iff \overline{F} = M_1 \cdot M_3 \cdot M_4$

For the output of an **and** gate to be 0, at least one input must be 0

SOP and POS

Boolean Function with **minterms**

Boolean Function with Maxterms

References

Young Won Lim 3/22/18 Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Boolean Function with Maxterms

K-Map 3 variables (1)

index				minterms
Θ	0	0	0	$\overline{x}\overline{y}\overline{z}$
1	0	0	1	$\overline{x} \overline{y} z$
2	0	1	0	$\overline{x} y \overline{z}$
3	0	1	1	$\overline{x} y z$
4	1	0	0	$x \bar{y} \bar{z}$
5	1	0	1	$x \overline{y} z$
6	1	1	0	xyz
7	1	1	1	x y z

4

Logic (8C) K-Map

K-Map 3 variables (2)

Logic (8C) K-Map

K-Map 3 variables (3)

Logic (8C) K-Map

K-Map 3 variables (4)

Logic (8C) K-Map

K-Map 3 variables (5)

Logic (8C) K-Map

8

K-Map 3 variables (5)

Logic (8C) K-Map

K-Map 3 variables (5)

Logic (8C) K-Map

K-Map, minterms, and Maxterms

Each rectangle is associated with a minterm or a maxterm which represents a particular input variable conditions.

In this table, output function value is overlaid

Logic (8C) K-Map

Boolean Function with minterms

Logic (8C) K-Map

Boolean Function with Maxterms

Logic (8C) K-Map

Logic (8C) K-Map
K-Map 4 variables (1)

index					minterms
Θ	0	0	0	0	$\overline{x}\overline{y}\overline{z}\overline{w}$
1	0	0	0	1	$\overline{x}\overline{y}\overline{z}w$
2	0	0	1	0	$\bar{x} \bar{y} z \bar{w}$
3	0	0	1	1	$\overline{x}\overline{y}zw$
4	0	1	0	0	$\overline{x} y \overline{z} \overline{w}$
5	0	1	0	1	x y z w
6	0	1	1	0	$\overline{x} y z \overline{w}$
7	0	1	1	1	$\overline{x} y z w$
8	1	0	0	0	$x \bar{y} \bar{z} \bar{w}$
9	1	0	0	1	$x \overline{y} \overline{z} w$
10	1	0	1	0	$x \bar{y} z \bar{w}$
11	1	0	1	1	$x \overline{y} z w$
12	1	1	0	0	$x y \overline{z} \overline{w}$
13	1	1	0	1	xyzw
14	1	1	1	0	$x y z \overline{w}$
15	1	1	1	1	xyzw

			z=0		z=1	
			w=0	w=1		w=0
			00	01	11	10
		00	0	1	3	2
X=0	у=0		0000	0001	0011	0010
		01	4	5	7	6
	y=1		0100	0101	0111	0110
		11	12	13	15	14
X=1			1100	1101	1111	1110
		10	8	9	11	10
	у=0		1000	1001	1011	1010

Logic (8C) K-Map

K-Map 4 variables (2)

index					minterms
Θ	0	0	0	0	$\overline{x}\overline{y}\overline{z}\overline{w}$
1	0	0	0	1	$\overline{x}\overline{y}\overline{z}w$
2	0	0	1	0	$\overline{x}\overline{y}z\overline{w}$
3	0	0	1	1	$\overline{x}\overline{y}zw$
4	0	1	0	0	$\overline{x} y \overline{z} \overline{w}$
5	0	1	0	1	$\overline{x} y \overline{z} w$
6	0	1	1	0	$\bar{x} y z \bar{w}$
7	0	1	1	1	$\overline{x} y z w$
8	1	0	0	0	$x \bar{y} \bar{z} \bar{w}$
9	1	0	0	1	$x \overline{y} \overline{z} w$
10	1	0	1	0	$x \bar{y} z \bar{w}$
11	1	0	1	1	xÿzw
12	1	1	0	0	$x y \overline{z} \overline{w}$
13	1	1	0	1	xyzw
14	1	1	1	0	$x y z \overline{w}$
15	1	1	1	1	xyzw

Logic (8C) K-Map

References

Set Operations (1A)

Young Won Lim 3/23/18 Copyright (c) 2017 - 2 018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

In mathematics, the **power set** (or **powerset**) of any set *S* is the set of all subsets of *S*, including the empty set and *S* itself, variously denoted as $\mathcal{P}(S)$, $\mathcal{P}(S)$, $\mathcal{P}(S)$ (using the "Weierstrass p"), P(S), $\mathbb{P}(S)$, or, identifying the powerset of *S* with the set of all functions from *S* to a given set of two elements, 2^S . In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set.^[1]

Any subset of $\mathcal{P}(S)$ is called a *family of sets* over S.

https://en.wikipedia.org/wiki/Power_set

Power Set Example

If S is the set $\{x, y, z\}$, then the subsets of S are

- {} (also denoted \varnothing or \emptyset , the empty set or the null set)
- {*x*}
- {y}
- {*z*}
- $\{x, y\}$
- $\{x, z\}$
- $\{y, z\}$
- $\{x, y, z\}$

and hence the power set of S is $\{ \{ \}, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\} \}$.^[2]

https://en.wikipedia.org/wiki/Power_set

References

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Gauss-Jordan Elimination

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Determinant (3A)

Young Won Lim 03/22/2018

 (L_3)

$$+2x_1 + x_2 - x_3 = 8 (L_1)$$

$$-3x_1 - x_2 + 2x_3 = -11 (L_2)$$

 $-2x_1 + x_2 + 2x_3 = -3$

+ $1x_1$ + $\frac{1}{2}x_2 - \frac{1}{2}x_3 = 4$ $(\frac{1}{2} \times L_1)$ + 2/2 + 1/2 - 1/2 + 8/2

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = 4 \qquad (\frac{1}{2} \times L_{1})$$
$$-3x_{1} - x_{2} + 2x_{3} = -11 \qquad (L_{2})$$
$$-2x_{1} + x_{2} + 2x_{3} = -3 \qquad (L_{3})$$

$$\begin{bmatrix} +1 +1/2 -1/2 +4 \\ -3 -1 +2 -11 \\ -2 +1 +2 -3 \end{bmatrix}$$

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Determinant (3A)

$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4$	(L_1)	$ \begin{bmatrix} +1 +1/2 -1/2 \\ -3 -1 +2 \\ -2 +1 +2 \end{bmatrix} $	+4
$-3x_{1} - x_{2} + 2x_{3} = -11$	(L_2)		-11
$-2x_{1} + x_{2} + 2x_{3} = -3$	(L_3)		-3
$+3x_1 + \frac{3}{2}x_2 - \frac{3}{2}x_3 = +12$	$(3 \times L_1)$	+3 +3/2 -3/2	+12
$-3x_1 - x_2 + 2x_3 = -11$	(L_2)	-3 -1 +2	-11
$+2x_1 + \frac{2}{2}x_2 - \frac{2}{2}x_3 = +8$	$(2 \times L_1)$	+2 +2/2 -2/2	+8
-2x_1 + x_2 + 2x_3 = -3	(L_3)	-2 +1 +2	_3
$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$	(L_1)	+1 +1/2 -1/2	+4
$0x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = +1$	$(3 \times L_1 + L_2)$ $(2 \times L_1 + L_3)$	0 +1/2 +1/2	+1
$0x_1 + 2x_2 + 1x_3 = +5$		0 +2 +1	+5

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Determinant (3A)

$$+ 1 x_{1} + \frac{1}{2} x_{2} - \frac{1}{2} x_{3} = + 4 \qquad (L_{1})$$

$$0 x_{1} + \frac{1}{2} x_{2} + \frac{1}{2} x_{3} = + 1 \qquad (L_{2})$$

$$0 + 1/2$$

$0x_1 + 1x_2 + 1x_3 = +2 \qquad (2 \times L_2)$		0	+1	+1	+2
---	--	---	----	----	----

$$\begin{array}{c} +1 x_{1} + \frac{1}{2} x_{2} - \frac{1}{2} x_{3} = +4 & (L_{1}) \\ 0 x_{1} + 1 x_{2} + 1 x_{3} = +2 & (2 \times L_{2}) \\ 0 x_{1} + 2 x_{2} + 1 x_{3} = +5 & (L_{3}) \end{array} \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & (+1) & +1 & +2 \\ 0 & (+1) & +1 & +2 \\ 0 & (+1) & (+1) & (+1) \\ 0 & (+1) & (+1) & (+1) \\ 0 & (+1) & (+1) & (+1) \\ (-1) & (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\ (-1) & (-1) & (-1) & (-1) \\$$

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Determinant (3A)

Young Won Lim 03/22/2018

 (L_3)

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 \qquad (L_{1})$$
$$0x_{1} + 1x_{2} + 1x_{3} = +2 \qquad (L_{2})$$

 $0x_1 + 2x_2 + 1x_3 = +5$

$$\left[\begin{array}{cccc} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & +2 & +1 & +5 \end{array} \right]$$

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Determinant (3A)

$$0x_1 - 0x_2 + 1x_3 = -1$$
 (-1 × L₃) 0 0 +1 -1

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 1x_{3} = +2 \qquad (L_{2})$$

$$0x_{1} + 0x_{2} + 1x_{3} = -1 \qquad (-1 \times L_{3})$$

$$\begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & +1 & -1 \end{bmatrix}$$

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Young Won Lim

03/22/2018

Determinant (3A)

Forward Phase

Forward Phase - Gaussian Elimination

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Determinant (3A)

Young Won Lim 03/22/2018

+ 1 x_1 + $\frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$	(L_1)	ſ	+1	+1/2	-1/2	+4
$0x_1 + 1x_2 + 1x_3 = +2$	(L_2)		0	+1	+1	+2
$0x_1 + 0x_2 + 1x_3 = -1$	(L_3)	l	0	0	+1	+2 _1
$0x_1 + 0x_2 + \frac{1}{2}x_3 = -\frac{1}{2}$	$(+\frac{1}{2} \times L_3)$		0	0	+1/2	-1/2
+ 1 x_1 + $\frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$	(L_1)		+1	+1/2	-1/2	+4
$0x_1 + 0x_2 - 1x_3 = +1$	$(-1 \times L_3)$		0	0	-1	+1
$0x_1 + 1x_2 + 1x_3 = +2$	(L_2)		0	+1	+1	+2
$+1x_1 + \frac{1}{2}x_2 + 0x_3 = +\frac{7}{2}$	$\left(\mathbf{+}\frac{1}{2} \times L_3 + L_1 \right)$	ſ	+1	+1/2	0	+7/2
$0x_1 + 1x_2 + 0x_3 = +3$	$(-1 \times L_3 + L_2)$		0	+1	0	+3
$0x_1 + 0x_2 + 1x_3 = -1$	(L_3)		0	0	+1	-1
			httno	://en wik	iversity or	n/wiki/Linear

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Determinant (3A)

Young Won Lim 03/22/2018

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Determinant (3A)

Backward Phase

https://en.wikiversity.org/wiki/Linear_Algebra_in_plain_view

Determinant (3A)

Young Won Lim 03/22/2018

Gauss-Jordan Elimination

Backward Phase – <u>Guass-Jordan Elimination</u>

Determinant (3A)

28

Young Won Lim 03/22/2018

References

The Growth of Functions (2A)

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Functions and Ranges

All are distinguishable

for x > -0.5 $x^2 < x^2 + 2x + 1$

The Growth of Functions (2A)

Medium Range

Functions and Ranges

Small Range, $2x^2$

The Growth of Functions (2A)

Young Won Lim 3/29/18

Medium Range, $2x^2$

Large Range, $2x^2$

Functions and Ranges

Small Range, *10x*²

Medium Range, $10x^2$

Functions and Ranges

Small Range, *10x*

for 0.127 < x < 7.873 $x^2 + 2x + 1 < 10x$

The Growth of Functions (2A)

Medium Range, *10x*

Large Range, *10x*

Big-O

Big-Ω

Big-O

for
$$k < x$$

 $f(x) \le C|g(x)|$
 $f(x)$ is $O(g(x))$

g(x) : upper bound of f(x)

g(x) has a simpler form than f(x) usually a single term

Big-Ω

for
$$k < x$$

 $f(x) \ge C|g(x)|$
 $f(x)$ is $\Omega(g(x))$

g(x) : lower bound of f(x)

g(x) has a simpler form than f(x) usually a single term

References

