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GCD

A 24-by-60 rectangle is covered

with ten 12-by-12 square tiles,

where 12 is the GCD of 24 and 60.

24=2-12 > 12|24 <= 2/ mod12=0

60=5-12 — 12|60 <= 60mod 12=0

More generally, an a-by-b rectangle can be covered with

square tiles of side-length d only if d is a common divisor of

aandb

d|a
d|b

d : common divisor

the largest d : gcd

(greatest common divisor)

https://en.wikipedia.org/wiki/Greatest_common_divisor
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LCM

What is the LCM of 4 and 67
Multiples of 4 are:
4,8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, ...
and the multiples of 6 are:
6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, ...
Common multiples of 4 and 6 are simply the numbers that are in both lists:
12, 24, 36, 48, 60, 72, ....

So, from this list of the first few common multiples of the numbers 4 and 6, their least common
multiple is 12.

https://en.wikipedia.org/wiki/Least_common_multiple
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GCD * LCM

Prime Factorization

ged(a,b) = pmnl@b) . pminlab) . pmin(a.b)
lcm<a,b> — pll\’fax(al,bl) . plz\/lax(az,bz) o nMax(an,bn)
ng(a,b)-lcm(a,b) = p¢171+b1_ ;2”’2 e Zn*bn = a-b

Numbers (8A)

Young Won Lim
6/21/17



Finding common unit length

i

c 49 21
Euchd's example Nicomachus' example

10°FC T*FC 3'FC 1*

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Euclid's method for finding

the greatest common divisor (GCD)
of two starting lengths BA and DC,
both defined to be multiples of

a common "unit" length.

The length DC being shorter,
it is used to "measure" BA,
but only once because remainder EA is less than DC.

EA now measures (twice) the shorter length DC, with
remainder FC shorter than EA.

Then FC measures (three times) length EA.

Because there is no remainder,
the process ends with FC being the GCD.

On the right Nicomachus' example with numbers 49
and 21 resulting in their GCD of 7 (derived from
Heath 1908:300).
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Euclid Algorithm Steps

remainder
N
>
remainder
I N }
Zero
divisor divisor divisor gcd

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Euclid Algorithm

_7 (%i3) factor(1le71) Step k Equation Quotient and remainder
| (%03) 32717 0 | 1071=g462+ry go=2and rp =147
1 462 =q, 147 + =3andr; =21
" (%i4) factor(462) q1 r g1=3and ry
| (%04) 23711 2 147=g:21+r | g»=7and r» =0; algorithm ends

_7 (%15) gcd(1071, 462)

B (%05) 21
1071 =3%7-17 1071 = 2 - 462 + 147
402=2:3711 462= 3147 + 21

ged(1071,462) =37 =21 ATeT  2140

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Common Divisor

1071 = 2 - 462 + 147 common divisor d

462 = 3-147 +21 d|1071 andd | 462

1077 modd=0 ¢

d| 1071
462 modd=0 = (|

— 1
147=7 - 21+0 462

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Common Divisor Properties

common divisor d?

d| 1071 and d | 462 m) 1071l modd=0 and 462 modd=0

1071/=2 -462/ + 147 remainder

(2-462+147)mod d =0 11071 modd=0
2-(462modd) +147modd=0 < 462 modd=0

v 2.0+147modd=0

147 modd =0 ~—) 147modd=0

d| 462 and d| 147

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Reducing GCD Problems

1071 =2 - 462 + 147 d| 1071 and d | 462 ged (1071,462)
462 = 3-147+21 d | 462 and d | 147 ged (462,147)
147=7 - 21+0 d| 147 and d | 21 ged (147,21)
1071 ]
[ 462
147

.

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Linear Combination of gcd(1071, 462)=21

1071=2-462+147 =y [1071-2-462 =147

462= 3.147+21  wmp 462-3.147=21 =y  462-3.(1071—2-462)=21
7.462-3.1071 =21

147=7 - 21 +0 ged(1071, 462) = 21
= _3.1071+7-462

ged(o,b)=sa+tb

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Linear Combination of gcd(252, 198)=18

252 =1 .198+54 Wy 252 — .108=54
198 = - 54 + 36 mm) | 108 - 54 =36
54 = -36+18 54 - 1 -36=18

(252 — - 198)— ' - (198 — - (252 — ' - 198)) = 18
36 =18 252 — 1 .198 — (4 - 198 — ~ - 252) = 18
. 252 -~ . 198 =18

ged(a,b)=sa+tb

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Bezout’s Identity — gcds as linear combinations

a, b e Z

EIx , . v e Z Bezout’s coefficients (not unique)

xa-+y b = gcd ((1 , b) Bezout’s identities

Generally, a linear combination ofa & b
must be unique and its coefficients X & y
need not be integers.

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Pairs of Bézout Coefficients Examples

42 =.12+6 mm) 42 - .12=6
12 =.6 (1-42-"-12) =6
(0 -12+ 0 -42) =6
( .
\\-\ V 12x —10 4+ 42x3 =6
" 12x-3 + 42x1 =
12 x 4 + 42 x -1 =6
xa + yb — gcd(a,b) 12 x 11 + 42 x -3 =6
12 x 18 + 142/ x -5 =6

x-12 + y-42 = ged(12,42)

Generally, x & y are not unique
unless a & b are relatively prime

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
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Pairs of Bézout Coefficients — not unique

12

x —10 + 42 x3 =6

. 12x -3 + 42x1 =6
12 x 4 + 42 x —1 =
12 x 11 + 42 x -3 =

12 x 18 + 42 x =5 =6

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity

-10

+7
3

+7
4
114
18 & 7/
42/6=7
|-3] < |7]
4] < 7]

3
+2
1
+2
-1
3 +2
5 +2
12/6=2
1] <|[2]
I-1] < |2]
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Pairs of Bézout Coefficients — 2 minimal pairs

xa + yb = gcd(a,b) 12x —10

+ 42 x 3 =
12 x —3 + 42 x 1 =6
12 x 4 + 42 x —1 —
12 x 11 + 42 x -3 =
12 x 18 + 42/x —5 =6
42/6=7 12/6=2
Among these pairs of Bézout
coefficients, exactly two of them satisfy
ol <17 1< 2
b a <|7 -1 <
2| < and |y < |——-/,
ged(a, b) ged(a, b)

The Extended Euclidean Algorithm always

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity .. .
produces one of these two minimal pairs.
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Pairs of Bézout Coefficients — all pairs

12 x —3 + [42/x 1 =6
12 x 4 + 42 x —1 =
_ _ 12 x 11 + 42x-3 =6
all pairs can be represented in the form 12 x 18 + 42 % —5 —6
b a
(m+k—, y—k—) :
ged(a, b ged(a, b
(.5) (5) 42/6=7 12/6=2
-3+ 7K 1+ 2k

The Extended Euclidean Algorithm always
produces one of these two minimal pairs.

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
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Extended Euclid Algorithm

Ty = a r, =50
8p = 1 8 = 0
fﬂ = U tl = 1
Pis] = Ti_1 — QiTi and 0 < 7y < |14 (this defines g;)

8it1 = 8i—1 — ;8
tiv1 = ti1 — qit;

index i  quotient g;—1 Remainder r;j S o}
0 240 1 0
1 46 0 1
2 240+46=5|240—-5x46=10 1-5=x0=1 0—-5x1=-5
3 46 +10=4 46 —4 x10=6 0D—4x1l=-4 1—-4x-5=21
4 10+-6=1 10-1x6=4 1-1x-4=5 —5-1x21=-26
5 6+4=1 6—-1x4=2|-4-1x5=-9 21—-1x—-26=47
6 4 +2=2 4-2x%2=0|5—-—2x-9=23|-26—2x47=-120

Given a & b, the extended Euclid algorithm produce the same coefficients.
Uniquely, one is chosen among many possible Bézout’s coefficients

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
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Relatively Prime Numbers

gcd(a,n) =1 Relatively prime numbers a & n
sa+tn=1
sa+tn=1 (mod n) tnmod n=0
sa=1 (mod n)

the inverse of a exists : s < linear combination of ged(a, n)=1
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Finding an modulo inverse

Finding an inverse of a modulo n Relatively prime numbers a & n
Euclid Algorithm ged(a,n) = 1
Linear Combination sa+tn=1 (mod n)
The inverse ofa - s sa=1 (mod n)

Numbers (8A) 21 Young Won Lim
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Linear Combination of gcd(101, 4620)=1

From Rosen’s book

4620=/"-101+75  4620- " -101=75 .101-35-(4620—45-101) = —35-4620+1601-101
101 = - 75+26 101 — | - 75 =26 —9-75+26+(101~1-75) = 26-101-35-75
75 = -26+23 75 — -26=23 .26—9-(75—2-26) = —0-75+26-26
26 =.23+3 26 - .23=3 .23+8+(26-1-23) = 8-26-0-23
23 = .3+2 23 - .3=2 3— (23— 7-3)=1-23+3:3
3 = -.2+1 3 - ..2=1 3 -—1.2=1
Vo - .1
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Inverse of 101 modulo 4620

4620="-101+ 75

— 4620 + 101 =1

1101 = 1 (mod 4620)

1601 is an inverse of 101 modulo 4620
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Congruence

Etymology

Middle English, from Latin congruentia (“agreement”), from
congruéns, present active participle of congruo (“meet together,
agree”).

Noun: congruence (plural congruences)

The quality of agreeing or corresponding; being suitable and
appropriate.

(mathematics, number theory) A relation between two numbers
indicating they give the same remainder when divided by some
given number.

(mathematics, geometry) The quality of being isometric —
roughly, the same measure and shape.

(algebra) More generally: any equivalence relation defined on an

algebraic structure which is preserved by operations defined by
the structure.

https://en.wiktionary.org/wiki/congruence
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Congruence in Geometry

B 74
19
cong ruent
/‘/

c/

\ similar

\\\ congruent
https://en.wikipedia.org/wiki/Congruence_(geometry) -

Young Won Lim
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Congruent modulo n

a=>b (mod n) a is congruent to b modulo n
n | (G — b) n divides (a-b)

u

(a—b) modn = 0

o

(CI mod n) — (b mod n) the same remainder

A remainder is positive (0, .. n-1)
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Congruence Relation

Modular arithmetic can be handled mathematically by introducing a congruence relation on the
integers that is compatible with the operations on integers: addition, subtraction, and multiplication.
For a positive integer n, two integers @ and b are said to be congruent modulo n, written:

a=b (mod n),

if their difference a — b is an integer multiple of n (or n divides a — b). The number n is called the
modulus of the congruence.

For example,
38=14 (mod 12)
because 38 — 14 = 24, which is a multiple of 12.
The same rule holds for negative values:
—~8=7 (mod 5)
2=-3 (mod 5)
~3=-8 (mod 5).

Equivalently, a = b mod n can also be thought of as asserting that the remainders of the division of both
a and b by n are the same. For instance:

38=14 (mod 12)

because both 38 and 14 have the same remainder 2 when divided by 12. It is also the case that
38 — 14 = 24 is an integer multiple of 12, which agrees with the prior definition of the congruence
relation.

https://en.wikipedia.org/wiki/Modular_arithmetic
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Properties of a Congruence Relation

A remark on the notation: Because itis common to consider several congruence relations for different
moduli at the same time, the modulus is incorporated in the notation. In spite of the ternary notation,
the congruence relation for a given modulus is binary. This would have been clearer if the notation

a =, b had been used, instead of the common traditional notation.

The properties that make this relation a congruence relation (respecting addition, subtraction, and
multiplication) are the following.

If

a1 =b (mod n)
and

as = by (mod n),
then:

«ayta=b +b (mod n)
«a;—az=b; — by (mod n).

The above two properties would still hold if the theory were expanded to include all real numbers, that

is if aj. asz, by, b2, n were not necessarily all integers. The next property, however, would fail if these
variables were not all integers:

« ajas = by (mod n).

https://en.wikipedia.org/wiki/Modular_arithmetic
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Remainders

The notion of modular arithmetic is related to that of the remainder in Euclidean division. The
operation of finding the remainder is sometimes referred to as the modulo operation, and denoted

with "mod" used as an infix operator. For example, the remainder of the division of 14 by 12 is denoted
by 14 mod 12; as this remainder is 2, we have 14 mod 12 =2.

The congruence, indicated by "=" followed by "mod" between parentheses, means that the operator
"mod", applied to both members, gives the same result. That is

A=B (mod n)

is equivalent to
A mod n =B mod n.

The fundamental property of multiplication in modular arithmetic may thus be written
(a mod n)(b mod n) =ab (mod n),

or, equivalently,

((a mod n) (b mod n)) mod n = (ab) mod n.

https://en.wikipedia.org/wiki/Modular_arithmetic
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Linear Congruence Problems

ax=>hb (mod n) A linear congruence
find x =7

ax==>o A linear equation
find x =7

A remainder is positive (0, .. n-1)
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Modular Multiplicative Inverse

A linear congruence
ax=b (mod n)

ab (mod n)
ab (mod n)

aadx
X

A linear equation

ax=>o

—1
a ax
X

Numbers (8A)
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A remainder is positive (0, .. n-1)
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Chinese Remainder Theorem

14710131619 22 _

I@@@@@@@ @Y’ x=2 (mod3) -
36912151821

Agggg g 3 X =3 (mod 5) and

5| @@ @
491419

Y 510152

Aggg g 2 x=2 (mod 7)
31017

7 ggg Sunzi's original formulation:
@@@ i g (mog g)

1000 =5 (mod

https://en.wikipedia.org/wiki/Chinese_remainder_theorem with the solution

x =23+ 105k where k € Z
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Chinese Remainder Theorem

=a, (mod m,) m,, m,, -~ m,
pairwise relatively prime

>
|

<
Il

a, (mod m,)

x=a, (modm)

n

x=b (mod m,m,--m_)  has a unique solution

https://en.wikipedia.org/wiki/Chinese_remainder_theorem
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m, m, and M

x=2 (mod3) m, =3 M,=m/m,=357/3=35
x=3 (mod5) m,=5 m=357=105 M,=m/m,=357/5=21
x=72 (mod 7) my, =7 M3:m/m3:3-5-7/7:15

=m/m, = m,m,

a, (mod m,)

Ml
a, (mod m,) m = m,m,m, M,=ml/m,=mm,
M,=ml/m, =m, m,

a, (mod m,)

M, mod m,= M, mod m, =0
M, mod m, =M, mod m, =0
M, mod m,= M, mod m,= 0

M; mod m;= M ; mod m;, =0
for i#j
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Inverse of Mi

my, m,, s

. pairwise relatively coprime

ged(M,, m,)=1 " M;y,=1 (mod m,) ,:the inverse of M,
ged(M,, m,) =1 " M,y,=1 (mod m,) Y : theinverse of M,
ged(M,, m,) =1 " Myy,=1 (mod m,) Y :theinverse of M,
M,y =1 (mOd m1) My =0 (mOd mz) My =0 (mOd m3)
M, y,=0 (mod m,) M,y, =1 (mod m,) M, y, =0 (mod m,)
Miy,=0 (mOd ml) Myy, = (mOd mz) Mjyy, =1 (mOd m3)

Numbers (8A)
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Sum of aMy.

a  M,;y,=1 (mod m,) M, y,=0 (mod m,) M, y,=0 (mod m,)
a, M,y,=0 (modm,) M,y,=1 (mod m,) M, y,=0 (mod m,)
a, Myzy;=0 (mod m,) My, =0 (mod m,) Mgy, =1 (mod m,)

a,M,y,=a, (medm,) aM;y =0 (modm,) a M.y =0
a,Myy,= 0 (mod m,) a,M,y,=a, (modm,) a,M,y,= 0 (modm,)
a;Myy,= 0 (modm,) a,Myy,= 0 (modm,) a,Myy,=a, (modm,)

(mod m,)

S

S

aM; -y +a,My,y,+a;M;y, = a M,y =a, (mOd m1>
aM; -y +a,Myy,+a;M;y;, = a,M, y,=a, (mOd mz)
aM; -y +a,M,y,+a;M;y, = a;M; y, =a, (mOd m3)

Numbers (8A) 36 Young Won Lim

6/21/17



X =Sum of aMy.

a, (mod m,)

a, (mod m,)

a, (mod m,)

aM; -y +a,Myy,+a;M;y, = a M-y, =a, (mOd m1>

aM;y +a,M,y,+a,M;y, a,M, y,=a, (mOd mz)

aM; -y +a,M,y, +a;M;y, = a;M; y;,=a, (mOd m3)

x = aM;y+a,M,y,+a;M;y,
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Chinese Remainder Examples (1)

x=2 (mod3) ~'m =3 M,=mim, =357/3=35  mm,
x =3 (mod 5) m2:5 3-5.-7=105 =m M2=m/m2=3-5'7/5:21 m;ms
x=2 (mod 7) my,="7 M3:m/m3:3-5-7/7:15 m,m,
M,=2 (mod m,) M,=0 (mod m,) M,=0 (mod m,) m,m
M,=0 (mod m,) M,=1 (mod m,) M,=0 (mod m,) m,m
M,=0 (mod m,) M,=0 (mod m,) M,=1 (mod m,) m,m,
M,y =352=22=1 (mod 3) y, (=2) : the inverse of M, (=35)
M,y,=21-1=1-1=1 (mod 5) y, (=1) : the inverse of M, (=21)
M,y,=151=1-1=1 (mod 7) y, (=1) : the inverse of M, (=15)

My, =1 (mod m,) M, y,=0 (mod m,) My, =0 (mod m,)
M,y,=0 (mod m,) M,y,=1 (mod m,) M, y,=0 (mod m,)
Mgy, =0 (mod m,) My y,=0 (mod m,) Mgy, =1 (mod m,)
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Chinese Remainder Examples (2)

M,y =352=22=1 (mod 3) v, (

=2) : the inverse of M, (=35)
M,y,=21-1=1-1=1 (mod 5) y, (=1) : the inverse of M, ( =21)
M,y,=151=1-1=1 (mod 7) y, (=1) : the inverse of M, (=15)

****** M,=35 y =—1+3xk
35=11-3 +2 l 35— 11-3=2 I 3—1+(35—-11-3)=—1-35+ 12-3
3=1-2+1 3—-1-2=1 3—-1-2=1
M,=21 y, = 1+5%k
21=4-5+1 l 21— 4-5= I 1-21—4-5=1
M, =15 y, = 1+7xk
15=2-7 + 1 l 15— 2.7 = I 1-.15-2-7=1
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Chinese Remainder Examples (3)

4 M,y =1 (mod m) M, y,=0 (mod m,) M, y,=0 (mod m,)
a, M,y,=0 (modm,) M,y,=1 (mod m,) M, y,=0 (mod m,)
a, Mzy;=0 (mod m,) My, =0 (mod m,) Mgy, =1 (mod m,)

m, =3
x = aMpqy +a,Myy,+a;Myy, my =5

my, =7
x = a,M,-y,=a, (modm,) M,=3-57/3=57=35
x = a,M,y,=a, (mod m,) M,=3:57/5=3-7=21
x = a,M,y,=a, (mod m,) M,=3-57/7=3-5=15
x = 2:35:2+3:21-1+42:15-1 = 233
x = 233 = 23 (mod 105) m=13-57 =105
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Chinese Remainder Summary

x=a, (mod m,) M,=m/m, = m,m,
x=a, (mod m,) m = m,m,m, M,=ml/m,=mm,
x=a, (mod m,) M,=m/m,=mm,

m,, m,, m, : pairwise relatively coprime

ged(M,, m,)=1 ~ M,y =1 (mod m) Y :theinverse of M,
ged(M,, m,) =1 " M,y,=1 (mod m,) Y,:theinverse of M,
ged(M,, m,) =1 " My;y,=1 (mod m,) Vs : theinverse of M,

x =aM -y +a,M,y,+a;M;y,
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Chinese Remainder Theorem

Let ny, ..., n; be integers greater than 1, which are often called moduli or divisors. Let us denote by v
the product of the n;.

The Chinese remainder theorem asserts that if the n; are pairwise coprime, and if ay, ..., a;, are integers
such that 0 < a; < n; for every i, then there is one and only one integer x, such that 0 < x < & and the
remainder of the Euclidean division of x by n; is a; for every i.

This may be restated as follows in term of congruences: If the n; are pairwise coprime, and if a;. ..., a;
are any integers, then there exists an integer x such that

r=a; (mod ng)

: »
r=a; (mod ny)

and any two such x are congruent modulo N.[11]

https://en.wikipedia.org/wiki/Chinese_remainder_theorem
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Upper and Lower Bounds

https://en.wikipedia.org/wiki/Algorithm
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