Digital to Analog Converter (8A)

Copyright (c) 2011-2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Unipolar Natural Binary

$$X_Q = R(D_1 2^{-1} + D_2 2^{-2} + \dots + D_N 2^{-N})$$

2^{-1}	2^{-2}	•••	2^{-N}
D_1	D_2	•••	D_{N}
msb			lsb

$\boldsymbol{D} = \begin{bmatrix} 0, & 0, & \cdots, & 0 \end{bmatrix}$	minimum level	$X_Q = 0$
$D = [0, 0, \cdots, 1]$	the lsb pattern	$X_Q = R 2^{-N} = Q$ the smallest non-zero level
$D = [1, 0, \dots, 0]$	the msb pattern	$X_Q = R 2^{-1}$
$D = [1, 1, \dots, 1]$	the maximum level	$X_Q = R(2^{-1} + 2^{-2} + \dots + 2^{-N}) = R(1 - 2^{-N}) = R - Q$

DAC – unipolar natural binary

Unipolar Natural Binary

$$X_Q = R(D_1 2^{-1} + D_2 2^{-2} + \dots + D_N 2^{-N})$$

4

$$Q = R 2^{-N}$$
 quantization width

$$X_Q = R 2^{-N} (D_1 2^{N-1} + D_2 2^{N-2} + \dots + D_N 2^0)$$

$$X_Q = Qm$$

$$m = (D_1 2^{N-1} + D_2 2^{N-2} + \dots + D_N 2^0)$$

$$D_1 D_2 \dots D_N$$
msb (sb)

DAC (8A)

DAC (8A)

References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/
- [3] M.L. Boas, "Mathematical Methods in the Physical Sciences"