Copyright (c) 2011-2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

A code is a rule for converting a piece of information (for example, a letter, word, phrase, or gesture) into another form or representation (one sign into another sign), not necessarily of the same type.

In communications and information processing, encoding is the process by which information from a source is converted into symbols to be communicated. **Decoding** is the reverse process, converting these code symbols back into information understandable by a receiver.

Character Coding

ASCII code

definitions for 128 characters: 33 non-printing control characters (many now obsolete) 95 printable charactersi

4

BCD (Binary Coded Decimal)

Number characters (0-9)

Decimal Digit	BCD 8421
0	0000
•	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Representation of Numbers

Representation of Signals

Analog to Digital Converter

Angular Position Sensors

Gray Coding Sector Contact 1 Contact 2 Contact 3 Angle off 0 off off 0° to 45° 45° to 90° 1 off off ON off ON 90° to 135° 2 ON off ON off 135° to 180° 3 4 off 180° to 225° ON ON 5 ON ON ON 225° to 270° 6 ON 270° to 315° ON off 7 ON off off 315° to 360°

Absolute rotary encoder ROQ 425

Ideal

Problems in ordinary binary coding

Dec	Gray	Binary
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

Gray Code

8

Gray code by <mark>bit</mark> width				
2-bit	4-bit			
00	0000			
01	0001			
11	0011			
10	0010			
	0110			
	0111			
3-bit	0101			
000	0100			
001	1100			
011	1101			
010	010 1111			
110	1110			
111	1010			
101	1011			
100	1001			
	1000			

Encoder and Decoder

Priority Encoder

Decimai Digit	BCD 8 4 2 1
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

the manipulation of numerical data for display can be greatly **simplified** by treating each digit as a separate single sub-circuit.

If the numeric quantity were stored and manipulated as pure binary, interfacing to such a display would require **complex** circuitry.

Often, **smaller code** results when representing numbers internally in BCD format, since a conversion from or to binary representation can be **expensive** on limited microprocessors.

BCD arithmetic is used in calculators : No rounding off error

7 Segment Display

Hexadecimal encodings for displaying the digits 0 to F

Digit	gfedcba	abcdefg	а	b	с	d	е	f	g
0	0×3F	0×7E	on	on	on	on	on	on	off
1	0×06	0×30	off	on	on	off	off	off	off
2	0×5B	0×6D	on	on	off	on	on	off	on
3	0×4F	0×79	on	on	on	on	off	off	on
4	0×66	0×33	off	on	on	off	off	on	on
5	0×6D	0×5B	on	off	on	on	off	on	on
6	0×7D	0×5F	on	off	on	on	on	on	on
7	0×07	0×70	on	on	on	off	off	off	off
8	0×7F	0×7F	on						
9	0×6F	0×7B	on	on	on	on	off	on	on
А	0×77	0×77	on	on	on	off	on	on	on
b	0×7C	0×1F	off	off	on	on	on	on	on
С	0×39	0×4E	on	off	off	on	on	on	off
d	0×5E	0×3D	off	on	on	on	on	off	on
E	0×79	0×4F	on	off	off	on	on	on	on
F	0×71	0×47	on	off	off	off	on	on	on

Offset Binary

Offset Binary and 2's Complement

Offset Binary (Excess K Code)

Offset Binary and ADC / DAC

2's complement

Offset binary

Offset Binary and Floating Pointer Numbers

Excess-3 and BCD Codes

References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"