Truth Table (2A)

Young Won Lim 3/26/13 Copyright (c) 2011-2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Truth Table and minterms (1)

Truth Table and minterms (2)

4

Truth Table and MAXterms (1)

Truth Table and MAXterms (2)

Maxterm and minterm Conditions

Boolean Function with minterms (1)

8

Boolean Function with minterms (2)

All possible combination of inputs

The output F becomes 0, either $m_0 = 1$ or $m_2 = 1$ or $m_5 = 1$ or $m_6 = 1$ or $m_7 = 1$ $m_0 + m_2 + m_5 + m_6 + m_7 = 1$ $\overleftarrow{F} = m_0 + m_2 + m_5 + m_6 + m_7$

For the output of an **or** gate to be 1, at least one must be 1

Boolean Function with Maxterms (1)

Boolean Function with Maxterms (2)

All possible combination of inputs

The output F becomes 0, either $M_0 = 0$ or $M_2 = 0$ or $M_5 = 0$ or $M_6 = 0$ or $M_7 = 0$ $M_0 \cdot M_2 \cdot M_5 \cdot M_6 \cdot M_7 = 0$ F = 0 \longleftrightarrow $F = M_0 \cdot M_2 \cdot M_5 \cdot M_6 \cdot M_7$

The output F becomes 1, either $M_1 = 0$ or $M_3 = 0$ or $M_4 = 0$ $M_1 \cdot M_3 \cdot M_4 = 0$ F = 1 $\longleftrightarrow \overline{F} = M_1 \cdot M_3 \cdot M_4$

For the output of an **and** gate to be 0, at least one input must be 0

11

Complimentary Relations

$$F(x, y, z) = m_1 + m_3 + m_4$$

The output F becomes 1, either $m_1=1$ or $m_3=1$ or $m_4=1$

For the output of an **or** gate to be 1, at least one must be 1

$$\overline{F}(x, y, z) = m_0 + m_2 + m_5 + m_6 + m_7$$

$$\longleftrightarrow F(x, y, z) = \overline{m_0 + m_2 + m_5 + m_6 + m_7}$$

$$= \overline{m_0} \cdot \overline{m_2} \cdot \overline{m_5} \cdot \overline{m_6} \cdot \overline{m_7}$$

$$F(x, y, z) = M_0 \cdot M_2 \cdot M_5 \cdot M_6 \cdot M_7$$

The output F becomes 0, either $M_0=0$ or $M_2=0$ or $M_5=0$ or $M_6=0$ or $M_7=0$ For the output of an **and** gate to be 0, at least one input must be 0

Boolean Function Summary

Boolean Function Summary

Truth Table

References

[1] http://en.wikipedia.org/