The Raised Cosine Pulse

Young W. Lim

November 26, 2013

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Physical Realization

- The Nyquist channel $P_{opt}(f)$: ideal
- the modified P(f) decreases toward zero gradually rather than abruptly (a rectangle function)

- two parts
- Flat portion $0 \le |f| \le f_1$
- Roll-off portion $f_1 \leq |f| \leq 2B_0 f_1$

Flat and Roll-off Portions

- one full cycle of the cosine function
- defined in the frequency domain
- raised up byan amount equal to its amplitude

•
$$P(f) = \frac{\sqrt{E}}{2B_0}$$
 $(0 \le |f| \le f_1)$
• $P(f) = \frac{\sqrt{E}}{4B_0} \left\{ 1 + \cos\left[\frac{\pi(|f| - f_1)}{2(B_0 - f_1)}\right] \right\}$ $(f_1 \le |f| \le 2B_0 - f_1)$
• $P(f) = 0$ $(2B_0 - f_1 \le |f|)$

Raised Cosine Pulse Spectrum

- $P(f) = \frac{\sqrt{E}}{2B_0}$ • $P(f) = \frac{\sqrt{E}}{4B_0} \left\{ 1 + \cos\left[\frac{\pi(|f| - f_1)}{2(B_0 - f_1)}\right] \right\}$ • P(f) = 0
 - $(0 \le |f| \le f_1)$ $(f_1 \le |f| \le 2B_0 f_1)$ $(2B_0 f_1 \le |f|)$

- slope $m = \frac{\pi}{2(B_0 f_1)}$ • x intercept point $(f_1, 0)$ $x \Longrightarrow (x - f_1)$
- argument equation $\theta = \frac{\pi(f-f_1)}{2(B_0-f_1)}$ • raised cosine $\frac{1}{2}\left\{1 + \cos\left[\frac{\pi(|f|-f_1)}{2(B_0-f_1)}\right]\right\}$

Roll-off Factor α

 \sim

•
$$P(f) = \frac{\sqrt{E}}{2B_0}$$

• $P(f) = \frac{\sqrt{E}}{4B_0} \left\{ 1 + \cos\left[\frac{\pi(|f| - f_1)}{2(B_0 - f_1)}\right] \right\}$
• $P(f) = 0$

 $(0 \le |f| \le f_1)$ $(f_1 \le |f| \le 2B_0 - f_1)$ $(2B_0 - f_1 \le |f|)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• roll-off factor
$$\alpha = \frac{(B_0 - f_1)}{B_0} = 1 - \frac{f_1}{B_0}$$

• normalized by $\frac{2B_0}{\sqrt{E}}$
• normalized frequency $\frac{f}{B_0}$
 $p(t) = \sqrt{E}sinc(2B_0t) \left(\frac{cos(2\pi\alpha B_0t)}{1 - 16\alpha^2 B_0^2 t^2}\right)$

Raised Cosine Pulse Spectrum & Shape

Raised Cosine Pulse Spectrum

•
$$P(f) = \frac{\sqrt{E}}{2B_0}$$
 $(0 \le |f| \le f_1)$
• $P(f) = \frac{\sqrt{E}}{4B_0} \left\{ 1 + \cos\left[\frac{\pi(|f| - f_1)}{2(B_0 - f_1)}\right] \right\}$ $(f_1 \le |f| \le 2B_0 - f_1)$
• $P(f) = 0$ $(2B_0 - f_1 \le |f|)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Raised Cosine Pulse Shape

•
$$p(t) = \sqrt{E} \operatorname{sinc}(2B_0 t) \left(\frac{\cos(2\pi\alpha B_0 t)}{1 - 16\alpha^2 B_0^2 t^2} \right)$$

Raised Cosine Pulse Shape

•
$$p(t) = \sqrt{E} \operatorname{sinc}(2B_0 t) \left(\frac{\cos(2\pi\alpha B_0 t)}{1 - 16\alpha^2 B_0^2 t^2} \right)$$

- $\sqrt{E}sinc(2B_0t)$ Nyquist channel
 - makes zero crossings at the sampling instants $t = iT_b$

•
$$\left(\frac{\cos(2\pi\alpha B_0 t)}{1-16\alpha^2 B_0^2 t^2}\right)$$
 decreases as $\frac{1}{|t|^2}$ for large $|t|$

- reduces the tails of the pulse significantly low
- makes the transmitted signal insensitive to sampling time errors

- the ISI error due to a timing error Δt decreases as lpha
ightarrow 1

Raised Cosine Pulse Shape $(\alpha \rightarrow 1)$

•
$$p(t) = \sqrt{E} \operatorname{sinc}(2B_0 t) \left(\frac{\cos(2\pi\alpha B_0 t)}{1 - 16\alpha^2 B_0^2 t^2} \right)$$

• the ISI error due to a timing error Δt decreases as lpha
ightarrow 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

•
$$p(t) = \sqrt{E} \left(\frac{\sin(2\pi B_0 t)}{2\pi B_0 t} \right) \left(\frac{\cos(2\pi B_0 t)}{1 - 16B_0^2 t^2} \right)$$

= $\sqrt{E} \left(\frac{\sin(4\pi B_0 t)}{2 \cdot 2\pi B_0 t} \right) \left(\frac{1}{1 - 16B_0^2 t^2} \right) = \sqrt{E} \left(\frac{\sin(4B_0 t)}{1 - 16B_0^2 t^2} \right)$

Zero Crossings of Raised Cosine Pulse Shape $(\alpha \rightarrow 1)$

•
$$p(t) = \sqrt{E} \operatorname{sinc}(2B_0 t) \left(\frac{\cos(2\pi\alpha B_0 t)}{1 - 16\alpha^2 B_0^2 t^2} \right) \Rightarrow \sqrt{E} \left(\frac{\sin(4B_0 t)}{1 - 16B_0^2 t^2} \right)$$

• zero crossings of
$$sinc(4B_0t)$$
 : $t = k\frac{1}{4B_0} = k\frac{T_b}{2}$

• but, at
$$t = \pm \frac{T_b}{2} = \pm \frac{1}{4B_0}$$
,
 $\implies 1 - 16B_0^2 t^2 = 0$ denominator is also zero

•
$$\frac{\sin(4\pi B_0 t)}{4\pi B_0 t(1-16B_0^2 t^2)}$$
 when $t = \pm \frac{I_b}{2} = \pm \frac{1}{4B_0}$
 $\implies \frac{4\pi B_0 \cos(4\pi B_0 t)}{4\pi B_0 (1-16B_0^2 3 t^2)} = \frac{1}{2}$
 $\implies p(t) = 0.5\sqrt{E}$

the same zero crossings: t = ±²/₂T_b, ±⁴/₂T_b, ±⁶/₂T_b, ···
another zero crossings: t = ±³/₂T_b, ±⁵/₂T_b, ±⁷/₂T_b, ···

Transmission Bandwidth

- Transmission Bandwidth $B_T = 2B_0 f_1$
- Roll-off factor $\alpha = \frac{(B_0 f_1)}{B_0} = 1 \frac{f_1}{B_0}$

•
$$B_T = B_0 + B_0 - f_1 = B_0 + \alpha B_0 = (1 + \alpha) B_0$$

- Excess Bandwidth $f_v = \alpha B_0$
- Roll-off factor = Excess bandwidth factor

When
$$\alpha \to 0$$

• $f_v \to 0$
• $B_T \to B_0 = \frac{1}{2B_0}$ minimum bandwidth
When $\alpha \to 1$

- $f_v \rightarrow B_0$
- $B_T \rightarrow 2B_0 = \frac{1}{B_0}$ doubled bandwidth
- used for synchronizing the receiver to the transmitter

The Infinite Replicas of the Raised Cosine Pulse Spectrum

The Infinite Replication

The infinite summation of replicas of the raised cosine pulse spectrum, spaced by $2B_0$ Hz, equals a constant.

$$\sum_{m=-\infty}^{\infty} P(f - m2B_0) = \frac{\sqrt{E}}{2B_0}$$

$$\sum_{n=-\infty}^{\infty} p(\frac{n}{2B_0}) \delta(t - \frac{n}{2B_0}) \stackrel{\text{top}}{\Longrightarrow} 2B_0 \sum_{m=-\infty}^{\infty} P(f - m2B_0)$$

$$p(t) = \sqrt{E} \operatorname{sinc}(2B_0 t) \left(\frac{\cos(2\pi\alpha B_0 t)}{1 - 16\alpha^2 B_0^2 t^2}\right)$$

$$p(\frac{n}{2B_0}) = \sqrt{E} \operatorname{sinc}(2B_0 \frac{n}{2B_0}) \left(\frac{\cos(2\pi\alpha B_0 \frac{n}{2B_0})}{1 - 16\alpha^2 B_0^2 \left(\frac{n}{2B_0}\right)^2}\right) = \sqrt{E} \operatorname{sinc}(n) \left(\frac{\cos(\pi n\alpha)}{1 - 4n^2 \alpha^2}\right)$$

$$\operatorname{sinc}(n) = \frac{\sin(n\pi)}{n\pi} (= 1 \text{ when } n = 0 \text{ , } = 0 \text{ when } n = \pm 1, \pm 2, \cdots)$$

$$\cos(\pi n\alpha) = 1 \text{ when } n = 0$$

The Infinite Replicas of the Raised Cosine Pulse Spectrum

(ロ)、(型)、(E)、(E)、 E) のQ(()

$$p(\frac{n}{2B_0}) = \sqrt{E} \operatorname{sinc}(n) \left(\frac{\cos(\pi n\alpha)}{1 - 4n^2 \alpha^2}\right)$$

$$\operatorname{sinc}(n) = \frac{\sin(n\pi)}{n\pi} (= 1 \text{ when } n = 0 , = 0 \text{ when } n = \pm 1, \pm 2, \cdots)$$

$$\operatorname{cos}(\pi n\alpha) = 1 \text{ when } n = 0$$

$$p(\frac{n}{2B_0}) = \sqrt{E} \text{ when } n = 0$$

$$= 0 \text{ when } n = 0$$

$$\sqrt{E}\delta(t) \leftrightarrows 2B_0 \sum_{m=-\infty}^{\infty} P(f - m2B_0)$$

$$\frac{\sqrt{E}}{2B_0}\delta(t) \leftrightarrows \sum_{m=-\infty}^{\infty} P(f - m2B_0)$$

The Criterion for Zero ISI

Given the modified pulse shape p(t) for transmitting data over an imperfect channel using discrete pulse-amplitude modulation at the data rate 1/T, the pulse shape p(t) eleminates intersymbol interference if, and only if, its spectrum P(f) satisfies the condition $\sum_{m=-\infty}^{\infty} P(f - m/T) = \sum_{m=-\infty}^{\infty} P(f - m2B_0) = const \qquad |f| \le \frac{1}{2T}$

Reference

[1] S. Haykin, M Moher, "Introduction to Analog and Digital Communications", 2ed