The Raised Cosine Pulse

Young W. Lim

December 11, 2013

Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

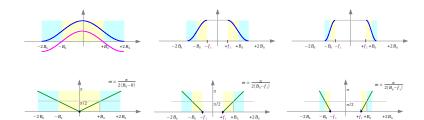
Physical Realization

- The Nyquist channel $P_{opt}(f)$: ideal
- the modified P(f) decreases toward zero gradually rather than abruptly (a rectangle function)
- two parts
- Flat portion $0 \le |f| \le f_1$
- Roll-off portion $f_1 \le |f| \le 2B_0 f_1$

Flat and Roll-off Portions

- one full cycle of the cosine function
- defined in the frequency domain
- raised up byan amount equal to its amplitude

•
$$P(f) = \frac{\sqrt{E}}{2B_0}$$
 $(0 \le |f| \le f_1)$
• $P(f) = \frac{\sqrt{E}}{4B_0} \left\{ 1 + \cos \left[\frac{\pi(|f| - f_1)}{2(B_0 - f_1)} \right] \right\}$ $(f_1 \le |f| \le 2B_0 - f_1)$
• $P(f) = 0$ $(2B_0 - f_1 \le |f|)$



Raised Cosine Pulse Spectrum

•
$$P(f) = \frac{\sqrt{E}}{2B_0}$$
 $(0 \le |f| \le f_1)$
• $P(f) = \frac{\sqrt{E}}{4B_0} \left\{ 1 + \cos \left[\frac{\pi(|f| - f_1)}{2(B_0 - f_1)} \right] \right\}$ $(f_1 \le |f| \le 2B_0 - f_1)$
• $P(f) = 0$ $(2B_0 - f_1 \le |f|)$

• slope
$$m = \frac{\pi}{2(B_0 - f_1)}$$

• x intercept point
$$(f_{1,0})$$
 $x \Longrightarrow (x - f_{1})$

• argument equation
$$\theta = \frac{\pi(f-f_1)}{2(B_0-f_1)}$$

• raised cosine
$$\frac{1}{2}\left\{1+cos\left[\frac{\pi(|f|-f_1)}{2(B_0-f_1)}\right]\right\}$$

Roll-off Factor α

•
$$P(f) = \frac{\sqrt{E}}{2B_0}$$
 $(0 \le |f| \le f_1)$
• $P(f) = \frac{\sqrt{E}}{4B_0} \left\{ 1 + \cos \left[\frac{\pi(|f| - f_1)}{2(B_0 - f_1)} \right] \right\}$ $(f_1 \le |f| \le 2B_0 - f_1)$
• $P(f) = 0$ $(2B_0 - f_1 \le |f|)$

$$oldsymbol{\circ}$$
 roll-off factor $lpha = rac{(B_0 - f_1)}{B_0} = 1 - rac{f_1}{B_0}$

• normalized by
$$\frac{2B_0}{\sqrt{E}}$$

• normalized frequency
$$\frac{f}{B_0}$$

$$p(t) = \sqrt{E} sinc(2B_0 t) \left(\frac{cos(2\pi\alpha B_0 t)}{1 - 16\alpha^2 B_0^2 t^2} \right)$$

Raised Cosine Pulse Spectrum & Shape

Raised Cosine Pulse Spectrum

•
$$P(f) = \frac{\sqrt{E}}{2B_0}$$
 $(0 \le |f| \le f_1)$
• $P(f) = \frac{\sqrt{E}}{4B_0} \left\{ 1 + \cos \left[\frac{\pi(|f| - f_1)}{2(B_0 - f_1)} \right] \right\}$ $(f_1 \le |f| \le 2B_0 - f_1)$
• $P(f) = 0$ $(2B_0 - f_1 \le |f|)$

Raised Cosine Pulse Shape

•
$$p(t) = \sqrt{E} \operatorname{sinc}(2B_0 t) \left(\frac{\cos(2\pi\alpha B_0 t)}{1 - 16\alpha^2 B_0^2 t^2} \right)$$

Raised Cosine Pulse Shape

•
$$p(t) = \sqrt{E} sinc(2B_0t) \left(\frac{cos(2\pi\alpha B_0t)}{1-16\alpha^2 B_0^2 t^2}\right)$$

- \sqrt{E} sinc(2 B_0t) Nyquist channel
 - ightharpoonup makes zero crossings at the sampling instants $t = iT_b$
- \bullet $\left(\frac{\cos(2\pi \alpha B_0 t)}{1-16\alpha^2 B_0^2 t^2} \right)$ decreases as $\frac{1}{|t|^2}$ for large |t|
 - reduces the tails of the pulse signficantly low
 - makes the transmitted signal insensitive to sampling time errors
 - ▶ the ISI error due to a timing error Δt decreases as lpha
 ightarrow 1

Raised Cosine Pulse Shape $(\alpha \to 1)$

•
$$p(t) = \sqrt{E} \operatorname{sinc}(2B_0 t) \left(\frac{\cos(2\pi\alpha B_0 t)}{1 - 16\alpha^2 B_0^2 t^2} \right)$$

ullet the ISI error due to a timing error Δt decreases as lpha
ightarrow 1

$$\begin{aligned} \bullet & \ p(t) = \sqrt{E} \left(\frac{\sin(2\pi B_0 t)}{2\pi B_0 t} \right) \left(\frac{\cos(2\pi B_0 t)}{1 - 16B_0^2 t^2} \right) \\ & = \sqrt{E} \left(\frac{\sin(4\pi B_0 t)}{2 \cdot 2\pi B_0 t} \right) \left(\frac{1}{1 - 16B_0^2 t^2} \right) = \sqrt{E} \left(\frac{\sin(4B_0 t)}{1 - 16B_0^2 t^2} \right) \end{aligned}$$

Zero Crossings of Raised Cosine Pulse Shape (lpha ightarrow 1)

$$\bullet \ p(t) = \sqrt{E} sinc(2B_0t) \left(\frac{cos(2\pi\alpha B_0t)}{1 - 16\alpha^2 B_0^2 t^2} \right) \Rightarrow \sqrt{E} \left(\frac{sinc(4B_0t)}{1 - 16B_0^2 t^2} \right)$$

- zero crossings of $sinc(4B_0t)$: $t = k\frac{1}{4B_0} = k\frac{T_b}{2}$
- ullet but, at $t=\pmrac{T_b}{2}=\pmrac{1}{4B_0}$, $\Longrightarrow 1-16B_0^2t^2=0$ denominator is also zero
- $\frac{\sin(4\pi B_0 t)}{4\pi B_0 t (1 16B_0^2 t^2)} \text{ when } t = \pm \frac{T_b}{2} = \pm \frac{1}{4B_0}$ $\Longrightarrow \frac{4\pi B_0 \cos(4\pi B_0 t)}{4\pi B_0 (1 16B_0^2 3 t^2)} = \frac{1}{2}$ $\Longrightarrow \rho(t) = 0.5\sqrt{E}$
 - the same zero crossings: $t = \pm \frac{2}{2} T_b, \pm \frac{4}{2} T_b, \pm \frac{6}{2} T_b, \cdots$
 - another zero crossings: $t = \pm \frac{3}{2} T_b, \pm \frac{5}{2} T_b, \pm \frac{7}{2} T_b, \cdots$

Transmission Bandwidth

- Transmission Bandwidth $B_T = 2B_0 f_1$
- Roll-off factor $\alpha = \frac{(B_0 f_1)}{B_0} = 1 \frac{f_1}{B_0}$
- $B_T = B_0 + B_0 f_1 = B_0 + \alpha B_0 = (1 + \alpha)B_0$
- Excess Bandwidth $f_v = \alpha B_0$
- Roll-off factor = Excess bandwidth factor

When $\alpha \rightarrow 0$

- $f_v \rightarrow 0$
- $B_T \to B_0 = \frac{1}{2B_0}$ minimum bandwidth

When lpha ightarrow 1

- $f_v \rightarrow B_0$
- $B_T \rightarrow 2B_0 = \frac{1}{B_0}$ doubled bandwidth
- used for synchronizing the receiver to the transmitter

The Infinite Replicas of the Raised Cosine Pulse Spectrum

The Infinite Replication

The infinite summation of replicas of the raised cosine pulse spectrum, spaced by $2B_0$ Hz, equals a constant.

$$\sum_{m=-\infty}^{\infty} P(f - m2B_0) = \frac{\sqrt{E}}{2B_0}$$

$$\begin{split} \sum_{n=-\infty}^{\infty} & p(\frac{n}{2B_0}) \delta(t - \frac{n}{2B_0}) \leftrightarrows 2B_0 \sum_{m=-\infty}^{\infty} P(f - m2B_0) \\ p(t) &= \sqrt{E} sinc(2B_0t) \left(\frac{cos(2\pi\alpha B_0t)}{1 - 16\alpha^2 B_0^2 t^2}\right) \\ p(\frac{n}{2B_0}) &= \sqrt{E} sinc(2B_0\frac{n}{2B_0}) \left(\frac{cos(2\pi\alpha B_0\frac{n}{2B_0})}{1 - 16\alpha^2 B_0^2 \left(\frac{n}{2B_0}\right)^2}\right) = \sqrt{E} sinc(n) \left(\frac{cos(\pi n\alpha)}{1 - 4n^2\alpha^2}\right) \\ sinc(n) &= \frac{sin(n\pi)}{n\pi} \left(= 1 \text{ when } n = 0 \text{ , } = 0 \text{ when } n = \pm 1, \pm 2, \cdots\right) \\ cos(\pi n\alpha) &= 1 \text{ when } n = 0 \end{split}$$

The Infinite Replicas of the Raised Cosine Pulse Spectrum

$$\begin{split} & \rho(\frac{n}{2B_0}) = \sqrt{E} sinc(n) \left(\frac{cos(\pi n\alpha)}{1-4n^2\alpha^2}\right) \\ & sinc(n) = \frac{sin(n\pi)}{n\pi} \ (=1 \ \text{when} \ n=0 \ , =0 \ \text{when} \ n=\pm 1, \pm 2, \cdots) \\ & cos(\pi n\alpha) = 1 \text{when} \ n=0 \\ & p(\frac{n}{2B_0}) = \sqrt{E} \ \text{when} \ n=0 \\ & = 0 \ \text{when} \ n=0 \\ & = 0 \ \text{when} \ n=0 \\ & \sqrt{E} \delta(t) \leftrightarrows 2B_0 \sum_{m=-\infty}^{\infty} P(f-m2B_0) \end{split}$$

The Criterion for Zero ISI

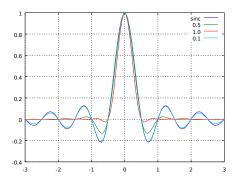
Given the modified pulse shape p(t) for transmitting data over an imperfect channel using discrete pulse-amplitude modulation at the data rate 1/T, the pulse shape p(t) eleminates intersymbol interference if, and only if, its spectrum P(f) satisfies the condition

$$\sum_{m=-\infty}^{\infty} P(f - m/T) = \sum_{m=-\infty}^{\infty} P(f - m2B_0) = const \qquad |f| \le \frac{1}{2T}$$

$$|f| \leq \frac{1}{2T}$$

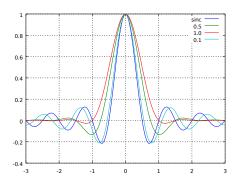
Plots with the extended bandwidth

•
$$p(t) = sinc(2t) \left(\frac{cos(2\pi\alpha t)}{1 - 16\alpha^2 t^2} \right)$$

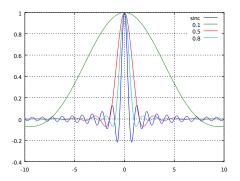


Plots with the fixed bandwidth

•
$$p(t) = \frac{\operatorname{sinc}(2t)}{1 - 16\alpha^2 B_0^2 t^2}$$
 $\alpha B_0 = 1$



Plots with the cosine term



Reference

[1] S. Haykin, M Moher, "Introduction to Analog and Digital Communications", 2ed