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Gaussian Random Process

Thermal Noise zero-mean white Gaussian random process

n(t ) random function 
the value at time t is characterized by 
Gaussian probability density function

p (n) =
1

σ √2π
exp [−1

2
(nσ )

2

]
σ
2 variance of n

σ = 1 normalized (standardized) 
Gaussian function

z (t ) = a + n(t)

p (z ) =
1

σ √2π
exp[−1

2
( z−aσ )

2

]

Central Limit Theorem sum of statistically independent random variables
approaches Gaussian distribution
regardless of individual distribution functions
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White Gaussian Noise (1)

Thermal Noise power spectral density is the same for all frequencies

Gn( f ) =
N0

2

n(t )

equal amount of noise power
per unit bandwidth

watts / hertz

uniform spectral density White Noise

Rn(t) =
N0

2
δ(t) Gn( f ) =

N0

2

totally uncorrelated, noise samples are independent δ(t)

memoryless channel
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White Gaussian Noise (2)

Thermal Noise power spectral density is the same for all frequencies

Gn( f ) =
N0

2

n(t )

average power 

equal amount of noise power
per unit bandwidth

watts / hertz

uniform spectral density White Noise

Rn(t) =
N0

2
δ(t)

P x
T

=
1
T

∫
−T /2

+T /2

x2
(t) dt = ∫−∞

+∞

Gx ( f ) d f

Pn = ∫−∞

+∞ N0

2
d f = ∞

Gn( f ) =
N0

2
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White Gaussian Noise (3)
n(t )

Rn(t) =
N0

2
δ(t)

Gn( f ) =
N0

2

additive and no multiplicative mechanism

Additive White Gaussian Noise (AWGN)

h(t )∗h∗
(−t)R xx( τ) R yy( τ)

H (ω)H∗
(ω)S xx(ω) S yy(ω)

R.V

X (t ) Y (t )h(t)

R.V

−B +B

Pn0 = ∫−B

+B N0

2
d f

=
N0

2
⋅2B

= N0B

average power average power 

Pn = ∞

−B +B
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White Gaussian Noise (4)

Gn( f ) =
N0

2

σ0
2

= n0
2
(t ) =

N0

2 ∫
−∞

+∞

∣H ( f )∣
2 d fAverage output noise power

Linear
Filter
h(t)

n(t ) n0(t ) = n(t )∗h(t )

Gn0( f ) = Gn( f ) ∣H ( f )∣
2

=

N0

2
∣H ( f )∣

2
for ∣f∣< f u

0 otherwise

σ0 = √n0
2(t) = √ 1T ∫

−T /2

+T /2

n0
2(t) dtRMS
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Gaussian Random Process
n(t )

p (z ) =
1

σ√2 π
exp [−1

2
( zσ )

2

]
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)
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m= 0

σ
2
≠ 0

P x
T =

1
T

∫
−T /2

+T /2

x2(t ) dt

Power Signal
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Matched Filter (1)

Linear
Filter
h(t)r (t ) = si(t ) + n(t) z (t ) = ai(t) + n0(t )

to find a filter h(t) that gives max signal-to-noise ratio

sampled at t=T

variance of avg noise power

( SN )
T

=
ai

2

σ0
2

 instantaneous signal power

 average noise power

σ0
2

assume ( SN )
T

H0( f ) a filter transfer function that maximizes

n0(t )

ai
2
(T )

n0
2
(t)
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Matched Filter (2) 

Gn( f ) =
N0

2

σ0 =
N0

2 ∫
−∞

+∞

∣H ( f )∣
2 d fAverage output noise power

A( f ) = S( f )H ( f )

Linear
Filter
h(t)

s(t) a(t ) = s(t )∗h(t )

S ( f ) a(t ) = ∫
−∞

+∞

S( f )H ( f )e j2π f t d f

Linear
Filter
h(t)

n(t ) n0(t ) = n(t )∗h(t )

Gn0( f ) = Gn( f ) ∣H ( f )∣
2

=

N0

2
∣H ( f )∣

2
for ∣f∣< f u

0 otherwise



Matched Filter (3B) 11 Young Won Lim
10/31/13

Matched Filter (3) 

( SN )
T

=
ai

2

σ0
2 =

∣∫
−∞

+∞

H ( f )S ( f )e+ j2π f T d f∣
2

N0 /2∫
−∞

+∞

∣H ( f )∣
2d f

σ0 =
N0

2 ∫
−∞

+∞

∣H ( f )∣
2 d faverage output noise power

∣∫
−∞

+∞

f 1 (x) f 2(x) dx∣
2

≤ ∫
−∞

+∞

∣f 1(x)∣
2 dx∫

−∞

+∞

∣f 2 (x)∣
2 dx

Cauchy Schwarz's Inequality

Does not depend on the particular 
shape of the waveform

'=' holds when f 1(x) = k f 2
∗
(x)

a(t ) = ∫
−∞

+∞

S( f )H ( f )e j2π f t d f instantaneous signal power ai
2

∣∫
−∞

+∞

H ( f )S( f )e+ j2π ft dx∣
2

df ≤ ∫
−∞

+∞

∣H ( f )∣
2
df ∫

−∞

+∞

∣S( f )e+ j2π f T∣
2
df

( SN )
T

=
ai

2

σ0
2

=
∣∫
−∞

+∞

H( f )S ( f )e+ j2 π f Td f∣
2

N0/2∫
−∞

+∞

∣H( f )∣2d f
≤

∫
−∞

+∞

∣H ( f )∣
2
df ∫

−∞

+∞

∣S( f )e+ j2π f T∣
2
df

N0/2∫
−∞

+∞

∣H ( f )∣
2
d f

=
2
N0

∫
−∞

+∞

∣S( f )∣
2
d f

∣e+ j2π f T∣ = 1
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Matched Filter (4) 

Two-sided power spectral density of input noise

( SN )
T

=
ai

2

σ0
2 =

∣∫
−∞

+∞

H ( f )S ( f )e+ j2π f T d f∣
2

N0 /2∫
−∞

+∞

∣H ( f )∣
2d f

N0

2

σ0 =
N0

2 ∫
−∞

+∞

∣H ( f )∣
2 d fAverage noise power

Cauchy Schwarz's Inequality

( SN )
T

≤
2
N0

∫
−∞

+∞

∣S( f )∣
2
d f

max ( SN )
T

=
2
N0

∫
−∞

+∞

∣S( f )∣
2
d f =

2E
N0

input signal energy

power spectral density 
of input noise

does not depend on the particular 
shape of the waveform
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Matched Filter (5) 

( SN )
T

≤
2
N0

∫
−∞

+∞

∣S( f )∣
2
d f

max ( SN )
T

=
2
N0

∫
−∞

+∞

∣S( f )∣
2
d f =

2E
N0

H ( f ) = H0( f ) = kS∗
( f )e− j2π f T

h(t ) = h0(t) = ks (T − t) 0 ≤ t ≤ T

0 elsewhere

∣∫
−∞

+∞

H ( f )S( f )e+ j2π ft dx∣
2

df ≤ ∫
−∞

+∞

∣H ( f )∣
2
df ∫

−∞

+∞

∣S( f )e+ j2π f T∣
2
df

when complex conjugate relationship exists

( SN )
T

H0( f ) a filter transfer function that maximizes

impulse response : delayed version of 
the mirror image of the signal waveform
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Convolution vs. Correlation Realization

z (t ) = ∫
0

t

r (τ)h (t−τ) d τ

= ∫
0

t

r (τ)s (T−(t−τ)) d τ

= ∫
0

t

r (τ)s (T−t+τ) d τ

z (T ) = ∫
0

T

r (τ)s ( τ) d τ

Linear
Filter
h(t)

r (t ) z (t ) = r (t )∗h(t )

z (t ) = ∫
0

t

r (τ)s( τ) d τ

z (t ) = ∫
0

t

r (τ)s (T−t+τ) d τconvolution

correlation

a linear ramp output

a sine-wave amplitude modulated 
by a linear ramp

z (T ) = ∫
0

T

r (τ)s ( τ) d τ

z (T ) = ∫
0

T

r (τ)s ( τ) d τ

fixed position

shift position
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T

Convolution Realization 

∫
0

t

( ⋅ ) d τ

r (τ ) = s( τ) + n (τ )

s(T−t+ τ)

T

T

r (τ ) = s( τ) + n (τ )

s(T−t+ τ)

t

z (t ) = ∫
0

t

r (τ)h (t−τ) d τ

= ∫
0

t

r (τ)s (T−t+τ) d τ

T

T

T

r (τ ) = s( τ) + n (τ )

s(T +τ)

t=0

T

T

T

r (τ ) = s( τ) + n (τ )

s( τ)

t=T

for each time t z (T ) = ∫
0

T

r (τ)s ( τ) d τ
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T

Correlation Realization (1)

∫
0

t

( ⋅ ) dt
r (t ) = s(t) + n (t )

s(t)

z (t ) = ∫
0

t

r (t)s(t ) dt

T

T

r (t ) = s(t) + n (t )

s(t)

t

T

T

T

r (t ) = s(t) + n (t )

s(t)

z (T ) = ∫
0

T

r (τ)s ( τ) d τ
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Correlation Realization (2)

∫
0

T

( ⋅ ) d τ

r (t ) = s(t) + n (t )

s(t)

z (t ) = ∫
0

t

r (τ)s( τ) d τ

r (t ) = s(t) ai(T ) = z(T ) = ∫
0

T

s2( τ) d τ = E

( SN )
T

=
ai

2

σ0
2

ai
2
(T )

n0
2
(t)

σ0
2 = E [no

2(t )] = E [∫
0

T

n(t)s(t ) dt ∫
0

T

n( τ)s(τ ) d τ ]

= E [∬
0

T

n(t )n(τ ) s(t)s( τ) dt d τ ]

= ∬
0

T

E [n(t )n(τ )] s(t)s( τ) dt d τ

= ∬
0

T N0

2
δ(t − τ) s(t )s(τ ) dt d τ

=
N0

2
∫
0

T

s2(t ) dt =
N0

2
E

max ( SN )
T

=
2
N0

∫
−∞

+∞

∣S( f )∣
2
d f =

2E
N0

( SN )
T

=
ai

2

σ0
2 =

E2

N0

2
E

=
2E
N0

convolution

correlation
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Correlation and Convolution Examples (1)

z : integrate(cos(x)*cos(2*%pi - t +x), x, 0, t);

(sin(t)+2*t*cos(t))/4+sin(t)/4

z : integrate(cos(x)*cos(x), x, 0, t);

(sin(2*t)+2*t)/4

convolution

correlation

convolution
correlation

convolution
correlation
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Correlation and Convolution Examples (2)

s(t) Acos(ω0t )

0

0≤ t < T

elsewhere

z (t ) = ∫
0

t

r (τ)h (t−τ) d τ

= ∫
0

t

r (τ)s (T−(t−τ)) d τ

= ∫
0

t

r (τ)s (T−t+τ) d τ

z (t ) = ∫
0

t

r (τ)s (T−t+τ) d τ

when r (t ) = s(t )

z (t ) = ∫
0

t

s(τ)s (T−t+ τ) d τ

= A2∫
0

t

cos(ω0 τ) cos(ω0(T−t+ τ)) d τ

=
A2

2
∫
0

t

cos(ω0(T−t )) + cos(ω0(T−t+2 τ)) d τ

=
A2

2 [cos(ω0(T−t)) τ −
1
2ω0

sin(ω0(T−t+2 τ))]0
t

=
A2

2 [cos(ω0(T−t))t −
1
2ω0

{sin(ω0(T+t)) − sin(ω0(T−t ))}]
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Correlation and Convolution Examples (2)

s(t) Acos(ω0t )

0

A=T=1,n=4,ω0=8π

elsewhere

z (t ) = ∫
0

t

r (τ)h (t−τ) d τ

= ∫
0

t

r (τ)s (T−(t−τ)) d τ

= ∫
0

t

r (τ)s (T−t+τ) d τ

y(t) = ∫
−∞

+∞

h( τ)x(t−τ)d τ = ∫
−∞

+∞

x(t0−τ)x(t−τ)d τ

when r (t ) = s(t )

y (t) = A2∫
0

t

cos[ω0(t−τ)]cos [ω0 (−τ+T )]d τ

=
A2

2
∫
0

t

cos [ω0 (t−T )]+cos [ω0(−2 τ+t+T )]d τ

=
A2

2
{tcos [ω0 (t−T )]−

1
2ω0

cos [ω0 (−2 τ+t+T )]0
T}

=
A2

2
{tcos(ω0t)+

1
ω0

sin(ω0t)}

=
A2

2
{t (2T−t)cos(ω0t)−

1
ω0

sin (ω0t)}

(0≤t≤T )

(T≤t≤2T)

y (t) = A2∫
0

t

cos(ω0 τ)d τ

=
A2

2
∫
0

t

[1+cos(2ω0 τ)]d τ

= A2 t
2

+
A2

4ω0

[sin (2ω0 τ)]0
t

= A2 t
2

+
A2

4ω0

[sin (2ω0t)] (0≤t≤T )
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