# Matched Filter (3C)

| Copyright (c) 2012 - 2013 Young W. Lim.                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
| Please send corrections (or suggestions) to youngwlim@hotmail.com.                                                                                                                                                                                                                                                                                                              |
| This document was produced by using OpenOffice and Octave.                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |

### Gaussian Random Process

### **Thermal Noise**

zero-mean white Gaussian random process

n(t) random function the value at time t is characterized by Gaussian probability density function

$$z(t) = a + n(t)$$

 $p(n) = \frac{1}{\sigma \sqrt{2 \pi}} \exp \left[ -\frac{1}{2} \left( \frac{n}{\sigma} \right)^2 \right]$ 

$$p(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-a}{\sigma}\right)^2\right]$$

- $\sigma^2$  variance of n
- $\sigma = 1$  normalized (standardized) Gaussian function

### **Central Limit Theorem**

sum of statistically independent random variables approaches Gaussian distribution regardless of individual distribution functions

### **Thermal Noise**

power spectral density is the same for all frequencies

$$G_n(f) = \frac{N_0}{2}$$
 watts / hertz

equal amount of noise power per unit bandwidth

uniform spectral density



White Noise



 $\delta(t)$  totally <u>uncorrelated</u>, noise samples are independent memoryless channel

### **Thermal Noise**

power spectral density is the same for all frequencies

$$G_n(f) = \frac{N_0}{2}$$
 watts / hertz

equal amount of noise power per unit bandwidth

uniform spectral density



White Noise







average power

$$P_{x}^{T} = \frac{1}{T} \int_{-T/2}^{+T/2} x^{2}(t) dt = \int_{-\infty}^{+\infty} G_{x}(f) df$$

$$P_n = \int_{-\infty}^{+\infty} \frac{N_0}{2} \, df = \infty$$

Additive White Gaussian Noise (AWGN) additive and no multiplicative mechanism



## White Gaussian Noise (4)

Linear Filter h(t) 
$$G_n(f) = \frac{N_0}{2}$$
 
$$G_{n0}(f) = G_n(f) |H(f)|^2 = \begin{cases} \frac{N_0}{2} |H(f)|^2 & \text{for } |f| < f_u \\ 0 & \text{otherwise} \end{cases}$$

$$\sigma_0^2 = \overline{n_0^2(t)} = \frac{N_0}{2} \int_{-\infty}^{+\infty} |H(f)|^2 df$$

RMS 
$$\sigma_0 = \sqrt{\overline{n_0^2(t)}} = \sqrt{\frac{1}{T}} \int_{-T/2}^{+T/2} n_0^2(t) dt$$



## Matched Filter (1)

to find a filter h(t) that gives max signal-to-noise ratio



assume  $H_0(f)$  a filter transfer function that maximizes  $\left(\frac{S}{N}\right)_{n}$ 

## Matched Filter (2)

Linear Filter h(t)
$$A(f) = S(f)H(f)$$

$$a(t) = s(t)*h(t)$$

$$A(f) = S(f)H(f)$$

$$a(t) = \int_{-\infty}^{+\infty} S(f)H(f)e^{j2\pi ft} df$$

$$G_n(f) = \frac{\overline{N_0}}{2}$$
 
$$G_{n0}(f) = G_n(f) |H(f)|^2 = \begin{cases} \frac{N_0}{2} |H(f)|^2 & \text{for } |f| < f_u \\ 0 & \text{otherwise} \end{cases}$$

Average output noise power  $\sigma_0 = \frac{N_0}{2} \int_0^{+\infty} |H(f)|^2 df$ 

## Matched Filter (3)

instantaneous signal power  $a_i^2$ 

$$a_i^2$$

$$a(t) = \int_{-\infty}^{+\infty} S(f)H(f)e^{j2\pi ft} df$$

average output noise power 
$$\sigma_0 = \frac{N_0}{2} \int_{-\infty}^{+\infty} |H(f)|^2 df$$

$$\left(\frac{S}{N}\right)_{T} = \frac{a_{i}^{2}}{\sigma_{0}^{2}} = \frac{\left|\int_{-\infty}^{+\infty} H(f)S(f)e^{+j2\pi fT}df\right|^{2}}{N_{0}/2\int_{-\infty}^{+\infty} |H(f)|^{2}df}$$

Does not depend on the particular shape of the waveform

Cauchy Schwarz's Inequality

$$\left| \int_{-\infty}^{+\infty} f_1(x) f_2(x) \, dx \right|^2 \le \int_{-\infty}^{+\infty} |f_1(x)|^2 \, dx \int_{-\infty}^{+\infty} |f_2(x)|^2 \, dx \qquad \text{'='} \ \ holds \ when } f_1(x) = k f_2^*(x)$$

$$\left| \int_{-\infty}^{+\infty} H(f) S(f) e^{+j2\pi f t} \, dx \right|^{2} df \leq \int_{-\infty}^{+\infty} |H(f)|^{2} \, df \int_{-\infty}^{+\infty} |S(f) e^{+j2\pi f T}|^{2} \, df$$

$$|e^{+j2\pi fT}| = 1$$

$$\left(\frac{S}{N}\right)_{T} = \frac{a_{i}^{2}}{\sigma_{0}^{2}} = \frac{\left|\int_{-\infty}^{+\infty} H(f)S(f)e^{+j2\pi f T}df\right|^{2}}{N_{0}/2\int_{-\infty}^{+\infty} |H(f)|^{2}df}$$

$$\left(\frac{S}{N}\right)_{T} = \frac{a_{i}^{2}}{\sigma_{0}^{2}} = \frac{\left|\int_{-\infty}^{+\infty} H(f)S(f)e^{+j2\pi fT}df\right|^{2}}{N_{0}/2\int_{-\infty}^{+\infty} |H(f)|^{2}df} \leq \frac{\left(\int_{-\infty}^{+\infty} |H(f)|^{2}df\right)^{2}\int_{-\infty}^{+\infty} |S(f)e^{+j2\pi fT}|^{2}df}{N_{0}/2\int_{-\infty}^{+\infty} |H(f)|^{2}df} = \frac{2}{N_{0}}\int_{-\infty}^{+\infty} |S(f)|^{2}df$$

## Matched Filter (4)

Two-sided power spectral density of input noise



$$\frac{N_0}{2}$$

Average noise power

$$\sigma_0 = \frac{N_0}{2} \int_{-\infty}^{+\infty} |H(f)|^2 df$$

$$\left(\frac{S}{N}\right)_{T} = \frac{a_{i}^{2}}{\sigma_{0}^{2}} = \frac{\left|\int_{-\infty}^{+\infty} H(f)S(f)e^{+j2\pi f T} df\right|^{2}}{N_{0}/2\int_{-\infty}^{+\infty} |H(f)|^{2} df}$$

Cauchy Schwarz's Inequality

$$\left(\frac{S}{N}\right)_{T} \leq \frac{2}{N_{0}} \int_{-\infty}^{+\infty} |S(f)|^{2} df$$

$$\max \left(\frac{S}{N}\right)_{T} = \frac{2}{N_{0}} \int_{-\infty}^{+\infty} |S(f)|^{2} df = \frac{2E}{N_{0}}$$
power spectral density of input noise

does not depend on the particular shape of the waveform

## Matched Filter (5)

$$\left|\int_{-\infty}^{+\infty} H(f)S(f)e^{+j2\pi ft} dx\right|^{2} df \leq \int_{-\infty}^{+\infty} \left|\frac{H(f)}{H(f)}\right|^{2} df \int_{-\infty}^{+\infty} \left|\frac{S(f)e^{+j2\pi fT}}{S(f)e^{+j2\pi fT}}\right|^{2} df$$

$$\left(\frac{S}{N}\right)_{T} \leq \frac{2}{N_{0}} \int_{-\infty}^{+\infty} |S(f)|^{2} df$$

$$\max\left(\frac{S}{N}\right)_{T} = \frac{2}{N_{0}} \int_{-\infty}^{+\infty} |S(f)|^{2} df = \frac{2E}{N_{0}}$$

when complex conjugate relationship exists

$$H(f) = H_0(f) = kS^*(f)e^{-j2\pi fT}$$



$$h(t) = h_0(t) = \begin{cases} ks(T-t) & 0 \le t \le T \\ 0 & elsewhere \end{cases}$$

$$H_0(f)$$
 a filter transfer function that maximizes  $\left(\frac{S}{N}\right)_T$ 

impulse response : <u>delayed</u> version of the <u>mirror</u> image of the <u>signal</u> waveform

### Convolution vs. Correlation Realization



$$z(t) = \int_{0}^{t} r(\tau)h(t-\tau) d\tau$$

$$= \int_{0}^{t} r(\tau)s(T-(t-\tau)) d\tau$$

$$= \int_{0}^{t} r(\tau)s(T-t+\tau) d\tau$$

$$z(T) = \int_{0}^{T} r(\tau)s(\tau) d\tau$$

shift position

convolution 
$$z(t) = \int_{0}^{t} r(\tau)s(T-t+\tau) d\tau$$
  $z(T) = \int_{0}^{T} r(\tau)s(\tau) d\tau$ 

a sine-wave amplitude modulated by a linear ramp

$$z(T) = \int_{0}^{T} r(\tau)s(\tau) d\tau$$

**correlation** 
$$z(t) = \int_{0}^{t} r(\tau) s(\tau) d\tau$$
  $z(T) = \int_{0}^{T} r(\tau) s(\tau) d\tau$ 

a linear ramp output

$$z(T) = \int_{0}^{T} r(\tau) s(\tau) d\tau$$

fixed position

### **Convolution Realization**



## Correlation Realization (1)







## Correlation Realization (2)

$$r(t) = s(t) + n(t)$$

$$\int_{0}^{T} (\cdot) d\tau$$

$$z(t) = \int_{0}^{t} r(\tau)s(\tau) d\tau$$

### convolution

$$\frac{a_i^2(T)}{\overline{n_0^2(t)}} \qquad \left(\frac{S}{N}\right)_T = \frac{a_i^2}{\sigma_0^2}$$

$$\max\left(\frac{S}{N}\right)_T = \frac{2}{N_0} \int_{-\infty}^{+\infty} |S(f)|^2 df = \frac{2E}{N_0}$$

s(t)

#### correlation

$$\left(\frac{S}{N}\right)_{T} = \frac{a_{i}^{2}}{\sigma_{0}^{2}} = \frac{E^{2}}{\frac{N_{0}}{2}E} = \frac{2E}{N_{0}}$$

$$r(t) = s(t) \implies a_i(T) = z(T) = \int_0^T s^2(\tau) d\tau = E$$

$$\sigma_0^2 = E[n_o^2(t)] = E[\int_0^T n(t)s(t) dt \int_0^T n(\tau)s(\tau) d\tau]$$

$$= E[\int_0^T n(t)n(\tau) s(t)s(\tau) dt d\tau]$$

$$= \int_0^T E[n(t)n(\tau)] s(t)s(\tau) dt d\tau$$

$$= \int_0^T \frac{N_0}{2} \delta(t - \tau) s(t)s(\tau) dt d\tau$$

$$= \frac{N_0}{2} \int_0^T s^2(t) dt = \frac{N_0}{2} E$$

## Correlation and Convolution Examples (1)



z: integrate(cos(x)\*cos(2\*%pi - t + x), x, 0, t); (sin(t)+2\*t\*cos(t))/4+sin(t)/4

convolution

correlation

z: integrate(cos(x)\*cos(x), x, 0, t); (sin(2\*t)+2\*t)/4

## Correlation and Convolution Examples (2)

$$\begin{split} s(t) & A\cos(\omega_0 t) & 0 \leq t < T \\ & 0 & elsewhere \end{split}$$
 
$$z(t) = \int\limits_0^t r(\tau) s(T-t+\tau) \, d\tau$$
 
$$when \ r(t) = s(t)$$
 
$$z(t) = \int\limits_0^t s(\tau) s(T-t+\tau) \, d\tau$$
 
$$= A^2 \int\limits_0^t \cos(\omega_0 \tau) \cos(\omega_0 (T-t+\tau)) \, d\tau$$
 
$$= \frac{A^2}{2} \int\limits_0^t \cos(\omega_0 (T-t)) + \cos(\omega_0 (T-t+2\tau)) \, d\tau$$
 
$$= \frac{A^2}{2} \Big[ \cos(\omega_0 (T-t)) \tau - \frac{1}{2\omega_0} \sin(\omega_0 (T-t+2\tau)) \Big]_0^t$$
 
$$= \frac{A^2}{2} \Big[ \cos(\omega_0 (T-t)) t - \frac{1}{2\omega_0} [\sin(\omega_0 (T+t)) - \sin(\omega_0 (T-t))] \Big]_0^t$$

$$z(t) = \int_{0}^{t} r(\tau)h(t-\tau) d\tau$$

$$= \int_{0}^{t} r(\tau)s(T-(t-\tau)) d\tau$$

$$= \int_{0}^{t} r(\tau)s(T-t+\tau) d\tau$$

## Correlation and Convolution Examples (2)

$$s(t) \qquad A\cos(\omega_{0}t) \\ 0 \qquad elsewhere \\ y(t) = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau = \int_{-\infty}^{+\infty} x(t_{0}-\tau)x(t-\tau)d\tau \\ when \ r(t) = s(t) \qquad A=T=1, n=4, \omega_{0}=8\pi \\ y(t) = A^{2} \int_{0}^{t} \cos[\omega_{0}(t-\tau)]\cos[\omega_{0}(-\tau+T)]d\tau \\ = \frac{A^{2}}{2} \int_{0}^{t} \cos[\omega_{0}(t-T)] + \cos[\omega_{0}(-2\tau+t+T)]d\tau \\ = \frac{A^{2}}{2} [t\cos[\omega_{0}(t-T)] - \frac{1}{2\omega_{0}}\cos[\omega_{0}(-2\tau+t+T)]_{0}^{T}] \\ = \frac{A^{2}}{2} [t\cos(\omega_{0}t) + \frac{1}{\omega_{0}}\sin(\omega_{0}t)] \qquad (0 \le t \le T) \\ = \frac{A^{2}}{2} [t(2T-t)\cos(\omega_{0}t) - \frac{1}{\omega_{0}}\sin(\omega_{0}t)] \qquad (T \le t \le 2T)$$

$$z(t) = \int_{0}^{t} r(\tau)h(t-\tau) d\tau$$

$$= \int_{0}^{t} r(\tau)s(T-(t-\tau)) d\tau$$

$$= \int_{0}^{t} r(\tau)s(T-t+\tau) d\tau$$

$$\cos(\omega_{0}\tau)d\tau$$

$$\begin{split} y(t) &= A^2 \int_0^t \cos(\omega_0 \tau) d\tau \\ &= \frac{A^2}{2} \int_0^t [1 + \cos(2\omega_0 \tau)] d\tau \\ &= A^2 \frac{t}{2} + \frac{A^2}{4\omega_0} [\sin(2\omega_0 \tau)]_0^t \\ &= A^2 \frac{t}{2} + \frac{A^2}{4\omega_0} [\sin(2\omega_0 t)] \quad (0 \le t \le T) \end{split}$$

### References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/
- [3] B. Sklar, "Digital Communications: Fundamentals and Applications"
- [4] W. Etten, "Introduction to Random Signals and Noise"