DPCM (Differential Pulse Code Modulation)

Young W. Lim

October 18, 2013

(ロ)、(型)、(E)、(E)、 E) のQ(()

Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

DPCM Equations (1)

DPCM Principle

- $e(nT_s) = m(nT_s) \hat{m}(nT_s)$
- $e_q(nT_s) = e(nT_s) + q(nT_s)$
- $m_q(nT_s) = \hat{m}(nT_s) + e_q(nT_s)$

•
$$m_q(nT_s) = \hat{m}(nT_s) + e(nT_s) + q(nT_s)$$

 $[e(nT_s) = m(nT_s) - \hat{m}(nT_s)]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $m_q(nT_s) = m(nT_s) + e_q(nT_s)$

DPCM Equations (2)

 $m_q(nT_s)$ quantized signal at the prediction filter differs from $m(nT_s)$ by the quantization error $q(nT_s)$ the avarage power of the prediction error $e_q(nT_s)$ smaller than the average power of $m_q(nT_s)$ the number of levels of the quantizer also reduces

Reference

[1] S. Haykin, M Moher, "Introduction to Analog and Digital Communications", 2ed