Baseband Demodulation (3B)

Copyright (c) 2012 - 2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Signal Space

N-dim orthogonal space

Characterized by a set of N linearly independent functions

Basis functions $\Psi_i(t)$

Independent → not interfering in detection

$$\int_0^T \Psi_j(t) \Psi_k(t) dt = K_j \delta_{jk} \qquad 0 \le t \le T \qquad j, k = 1, \dots, N$$

 $K_i = 1$

Kronecker delta functions

$$\delta_{jk} = \begin{cases} 1 & for j = k \\ 0 & otherwise \end{cases}$$

N-dim orthonormal space

$$E_j = \int_0^T \Psi_j^2(t) dt = K_j$$

Linear Combination

Any finite set of waveform $\{s_i(t)\}$ $i=1,\cdots,M$ Characterized by a set of N linearly independent functions

Linear Combination

Any finite set of waveform $\{s_i(t)\}$ $i=1,\cdots,M$ Characterized by a set of N linearly independent functions

$$s_i(t) = \sum_{j=1}^{N} a_{ij} \Psi_j(t)$$
 $i = 1, \dots, M$ $N \leq M$

$$a_{ij} = \frac{1}{K_j} \int_0^T s_i(t) \Psi_j(t) dt \qquad i = 1, \dots, M \qquad 0 \le t \le T$$
$$j = 1, \dots, N$$

$$\{s_i(t)\}$$
 $\{s_i\}$ = $\{a_{i1}, a_{i2}, \cdots, a_{iN}\}$ $i = 1, \cdots, M$

Signals and Noise

Any finite set of waveform $\{s_i(t)\}$ $i=1,\cdots,M$ Characterized by a set of N linearly independent functions

$$\{s_i(t)\}$$
 $\{s_i\}$ = $\{a_{i1}, a_{i2}, \cdots, a_{iN}\}$ $i = 1, \cdots, M$

4-ary PAM

Detection of Binary Signals

Transmitted Signal

$$s_i(t) = \left\{ egin{array}{ll} s_1(t) & 0 \leq t \leq T & \textit{for a binary } 1 \\ s_2(t) & 0 \leq t \leq T & \textit{for a binary } 0 \end{array}
ight.$$

Received Signal

$$r(t) = s_i(t) + n(t)$$
 $i = 1,2;$ $0 \le t \le T$

Detection of Binary Signals

$$z(T) = a_i(T) + n_0(T)$$
 $z = a_i + n_0$

$$z = a_i + n_0$$

$$p(n_0) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{n_0}{\sigma_0}\right)^2\right]$$

$$p(z|s_1) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z - a_1}{\sigma_0} \right)^2 \right]$$

$$p(z|s_2) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z - a_2}{\sigma_0} \right)^2 \right]$$

$$z(T) \overset{H_1}{<}_{\sim}_{\gamma}$$

$$H_2$$

$$\frac{p(z|s_1)}{p(z|s_2)} \quad \stackrel{H_1}{\overset{>}{\underset{H_2}{\stackrel{>}{\sim}}}} \quad \frac{P(s_2)}{P(s_1)}$$

$$\frac{p(z|s_1)}{p(z|s_2)} \quad \stackrel{H_1}{\underset{H_2}{\gtrless}} \quad \frac{a_1 + a_2}{2} = \gamma_0$$

Error Probability

error e

$$p(e|s_1) = p(H_2|s_1) = \int_{-\infty}^{\gamma_0} p(z|s_1) dz$$
$$p(e|s_2) = p(H_1|s_2) = \int_{\gamma_0}^{\infty} p(z|s_2) dz$$

probability of bit error P_{II}

$$P_{B} = P(e|s_{1})P(s_{1}) + P(e|s_{2})P(s_{2})$$
$$= P(H_{2}|s_{1})P(s_{1}) + P(H_{1}|s_{2})P(s_{2})$$

equal a priori probabilities

$$P_{B} = \frac{1}{2}P(H_{2}|s_{1}) + \frac{1}{2}P(H_{1}|s_{2})$$
$$= P(H_{2}|s_{1}) = P(H_{1}|s_{2})$$

$$P_{B} = \int_{\gamma_{0} = (a_{1} + a_{2})/2}^{+\infty} p(z|s_{2}) dz$$

$$= \int_{\gamma_{0} = (a_{1} + a_{2})/2}^{+\infty} \frac{1}{\sigma_{0} \sqrt{2 \pi}} \exp\left[-\frac{1}{2} \left(\frac{z - a_{2}}{\sigma_{0}}\right)^{2}\right] dz$$

$$u = (z - a_{2})/\sigma_{0} \quad \sigma_{0} du = dz$$

$$= \int_{u = (a_{1} - a_{2})/2 \sigma_{0}}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp\left(\frac{-u^{2}}{2}\right) du$$

$$= Q\left(\frac{a_{1} - a_{2}}{2 \sigma_{0}}\right)$$

complementary error function (co-error function)

$$Q(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-x^{2}}{2}\right) dx$$

Maximum Likelihood Receiver

maximum likelihood detector

 $P(s_1) = P(s_2)$ equal a priori probability

 $p(z|s_1)$, $p(z|s_2)$ symmetric likelihood

 $\gamma_0 = \frac{(a_1 + a_2)}{2}$

optimum threshold for minimizing the error probability

select the hypothesis with the maximum likelihood

complementary error function

$$Q(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-u^{2}}{2}\right) du$$

$$P_B = \int_{\gamma_0 = \frac{(a_1 - a_2)/2\sigma_0}{2}}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-u^2}{2}\right) du$$

$$= Q \left(\frac{a_1 - a_2}{2 \sigma_0} \right)$$

Matched Filter Minimizes P_B by Maximizing SNR

Matched Filter / Correlator

complementary error function

$$Q(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-u^{2}}{2}\right) du$$

$$P_B = \int_{\gamma_0 = \frac{(a_1 - a_2)/2\sigma_0}{2}}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-u^2}{2}\right) du$$

$$= Q \left(\frac{E_d}{2 N_0} \right)$$

12

Binary Correlator Receiver

Energy Difference E_b

1 correlator

matched to
$$s_1 - s_2$$

$$\left(\frac{S}{N}\right)_{T} = \frac{a_{1} - a_{2}^{2}}{\sigma_{0}^{2}} = \frac{2E_{d}}{N_{0}}$$
 Bi
$$\frac{1}{2} \frac{a_{1} - a_{2}}{\sigma_{0}} = \sqrt{\frac{2E_{d}}{N_{0}} \frac{1}{4}}$$

Energy Difference

$$E_d = \int_0^T [s_1(t) - s_2(t)]^2 dt$$

Bit-Error Probability

$$P_B = Q \left(\frac{E_d}{2N_0} \right)$$

Time Averaging and Ergodicity

References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/
- [3] B. Sklar, "Digital Communications: Fundamentals and Applications"