Line Code (3C)

Copyright (c) 2012 - 2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

PCM Waveform Types

Nonreturn-to-zero (NRZ)

NRZ-L, NRZ-M, NRZ-S

Return-to-zero (RZ)

Unipolar-RZ, Bipolar-RZ, RZ-AMI

Phase encoded

Bi-Phase-Level, Bi-Phase-Mark, Bi-Phase-Space, DM

Multilevel binary

Bipolar-RZ, RZ-AMI, Dicode-NRZ, Dicode-RZ

Manchester Coding = Bi-Phase-Level

Miller Coding = Delay Modulation

PCM Waveform Types

- NRZ-L
- NRZ-M
- NRZ-S
- Unipolar RZ
- Bipolar RZ
- RZ-AMI
- Ві-Ф-<mark>L</mark>
- Ві-Ф-М
- Ві-Ф-**S**
- Delay Mod
- Dicode NRZ
- Dicode RZ

digital logic circuits

magnetic tape recording

baseband data transmission magnetic tape recording

telephone systems

magnetic tape recording optical communication satellite telemetry links

Non Return to Zero (NRZ)

NRZ-L (Level)

0:+V

1: - V

NRZ-M (mark)

0: no change

1 : change ← ↓

NRZ-S (Space)

0: change

1: no change

Non Return to Zero (NRZ)

NRZ-L (Level)

0:+V

+V voltage level

1: - V

-V voltage level

NRZ-M (mark)

0 : no change

no change in level

differential encoding

1: change

_ _

change in level

NRZ-S (Space)

0 : change

← ←

change in level

1: no change

no change in level

complement of NRZ-M

Return to Zero (RZ)

Unipolar-RZ

0: 1:

Bipolar-RZ

RZ-AMI

Return to Zero (RZ)

Unipolar-RZ

0: 1

0: absence of a pulse

1: a half bit wide pulse

Bipolar-RZ

0: a negative half bit wide pulse

1: a positive half bit wide pulse

RZ-AMI

Alternate Mark Inversion

0: absence of a pulse

1: alternating pulses

Phase Encoded (Βi-Φ)

Phase Encoded (Βi-Φ)

Bi-Φ-L (Level)

Manchester Encoding

0 :

0: a half bit wide pulse at the 2nd half

1:

1: a half bit wide pulse at the 1st half

Bi-Φ-M (mark)

0 : no trans

0: 1st transition at the beginning, no 2nd transition

1: trans

1: 1st transition at the beginning, 2nd transition in the middle

Bi-Φ-S (Space)

0 : trans

0: 1st transition at the beginning, 2nd transition in the middle

1: no trans

1: 1st transition at the beginning, no 2nd transition

Delay Modulation

1: a transition in the mid point

0: no transition in the mid point a transition when a zero is followed by another zero

Multilevel Binary

Dicode NRZ

 $0\rightarrow 0$, $1\rightarrow 1$: no pulse

 $0\rightarrow 1$, $1\rightarrow 0$: alt pulse

 $0\rightarrow 1$, $1\rightarrow 0$: alternating pulses

Dicode RZ

 $0\rightarrow 0$, $1\rightarrow 1$: no pulse

 $0\rightarrow 1$, $1\rightarrow 0$: alt pulse

 $0\rightarrow 1$, $1\rightarrow 0$: alternating half pulses

Bipolar AMI

Manchester Encoding

Differential Manchester

Biphase - Mark

References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/
- [3] B. Sklar, "Digital Communications: Fundamentals and Applications"
- [4] S. Haykin, M Moher, "Introduction to Analog and Digital Communications", 2ed