CT Correlation (2B)

•

Copyright (c) 2010 - 2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Correlation

How signals move relative to each other

Positively correlated the same direction

Average of product > product of averages

Negatively correlated

the opposite direction

Average of product < product of averages

Uncorrelated

CrossCorrelation for Power Signals

Energy Signal

$$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) y^*(t+\tau) dt$$
$$= \int_{-\infty}^{+\infty} x(t-\tau) y^*(t) dt$$

Energy Signal real x(t), y(t)

$$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) y(t+\tau) dt$$
$$= \int_{-\infty}^{+\infty} x(t-\tau) y(t) dt$$

Power Signal

$$R_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t) y^{*}(t+\tau) dt$$
$$= \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t-\tau) y^{*}(t) dt$$

Power Signal real x(t), y(t) $R_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_T x(t) y(t+\tau) dt$ $= \lim_{T \to \infty} \frac{1}{T} \int_T x(t-\tau) y(t) dt$

Periodic Power Signal

$$R_{xy}(\tau) = \frac{1}{T} \int_T x(t) y(t+\tau) dt$$

Correlation and Convolution

real x(t), y(t)

Correlation $R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) y(t+\tau) dt = \int_{-\infty}^{+\infty} x(t-\tau) y(t) dt$ Convolution $x(t) * y(t) = \int_{-\infty}^{+\infty} x(t-\tau) y(\tau) d\tau$

$$R_{xy}(\tau) = x(-\tau) * y(\tau)$$
$$x(-t) \longleftrightarrow \quad X^*(f)$$
$$R_{xy}(\tau) \longleftrightarrow \quad X^*(f)Y(f)$$

Correlation for Periodic Power Signals

$$R_{xy}(\tau) = \frac{1}{T} \int_{T} x(t) y(t+\tau) dt$$
Periodic Power Signal
Circular Convolution

$$R_{xy}(\tau) = \frac{1}{T} [x(-\tau) \circledast y(\tau)] \qquad x(t) \ast y(t) \qquad \xleftarrow{\mathsf{CTFS}} T X[k] Y[k]$$
$$R_{xy}(\tau) \qquad \xleftarrow{\mathsf{CTFS}} X^{\ast}[k] Y[k] \qquad x[n] \ast y[n] \qquad \xleftarrow{\mathsf{CTFS}} N_{0} Y[k] X[k]$$

CT Correlation (2B)

Correlation for Power & Energy Signals

One signal – a power signal The other – an energy signal Use the Energy Signal Version

7

$$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) y(t+\tau) dt$$

Autocorrelation

Energy Signal

$$R_{xx}(\tau) = \int_{-\infty}^{+\infty} x(t) x(t+\tau) dt$$

total signal energy

 $R_{xx}(0) = \int x^2(t) dt$

Power Signal

$$R_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t) x(t+\tau) dt$$

average signal power $R_{xx}(0) = \lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{+\infty} x^2(t) dt$

 $R_{xx}(0) \geq R_{xx}(\tau)$ max at zero shift

$$R_{xx}(0) \geq R_{xx}$$

$$R_{xx}(0) \geq R_{xx}(\tau)$$

$$R_{xx}(-\tau) = \int_{-\infty}^{+\infty} x(t)x(t-\tau) dt$$

$$s = t-\tau$$

$$R_{xx}(+\tau) = \int_{-\infty}^{+\infty} x(s+\tau)x(s) ds$$

$$s = t-\tau$$

$$ds = dt$$

$$R_{xx}(+\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t)x(t-\tau) dt$$

$$R_{xx}(+\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} x(s+\tau)x(s) ds$$

$$R_{yy}(\tau) = \int_{-\infty}^{+\infty} x(t-t_0) x(t-t_0+\tau) dt \qquad R_{yy}(\tau) = \lim_{T \to \infty} \int_{-\infty}^{T} x(t-t_0) x(t-t_0+\tau) dt R_{xx}(\tau) = \int_{-\infty}^{+\infty} x(s) x(s+\tau) ds \qquad y(t) = x(t-t_0) \qquad R_{xx}(\tau) = \lim_{T \to \infty} \int_{-\infty}^{T} x(s) x(s+\tau) ds$$

AutoCorrelation for Power Signals

Autocorrelation of Sinusoids

$$\begin{aligned} x(t) &= A_1 \cos(\omega_1 t + \theta_1) + A_2 \cos(\omega_2 t + \theta_2) = x_1(t) + x_2(t) \\ x(t)x(t+\tau) &= \{A_1 \cos(\omega_1 t + \theta_1) + A_2 \cos(\omega_2 t + \theta_2)\} \{A_1 \cos(\omega_1 (t+\tau) + \theta_1) + A_2 \cos(\omega_2 (t+\tau) + \theta_2)\} \\ &= A_1 \cos(\omega_1 t + \theta_1) A_1 \cos(\omega_1 (t+\tau) + \theta_1) + A_2 \cos(\omega_2 t + \theta_2) A_2 \cos(\omega_2 (t+\tau) + \theta_2) \\ &+ A_1 \cos(\omega_1 t + \theta_1) A_2 \cos(\omega_2 (t+\tau) + \theta_2) + A_2 \cos(\omega_2 t + \theta_2) A_1 \cos(\omega_1 (t+\tau) + \theta_1) \\ &\int_T A_1 \cos(\omega_1 t + \theta_1) A_2 \cos(\omega_2 (t+\tau) + \theta_2) dt = 0 \\ &\int_T A_2 \cos(\omega_2 t + \theta_2) A_1 \cos(\omega_1 (t+\tau) + \theta_1) dt = 0 \end{aligned}$$

$$R_{x}(\tau) = R_{x1}(\tau) + R_{x2}(\tau)$$
 $x_{k}(t) = A_{k}\cos(2\pi f_{k}t + \theta_{k})$

Autocorrelation of Random Signals

$$x(t) = \sum_{k=1}^{N} A_k \cos(\omega_k t + \theta_k)$$

$$R_{x}(\tau) = \sum_{k=1}^{N} R_{k}(\tau)$$

autocorrelation of $a_k \cos(\omega_k t + \theta_k)$

independent of choice of θ_k

random phase shift θ_k the same amplitudes athe same frequencies ω

 $x_k(t)$ different look $R_k(au)$ similar look

the amplitudes a can be observed the frequencies ω in the autocorrelation $R_k(\tau)$

similar look but not exactly the same

describes a signal generally, but not exactly – suitable for a random signal

Autocorrelation Examples

AWGN signal

changes rapidly with time

current value has no correlation with past or future values

even at very short time period

random fluctuation except large peak at $\tau = 0$

ASK signal : sinusoid multiplied with rectangular pulse

regardless of sin or cos, the autocorrelation is always even function

cos wave multiplied by a rhombus pulse

CrossCorrelation

$$R_{xy}(\tau) = R_{xy}(-\tau)$$

The largest peak occurs at a shift which is exactly the amount of shift Between x(t) and y(t)

The signal power of the sum depends strongly on whether two signals are correlated Positively correlated vs. uncorrelated

Pearson's product-moment coefficient

Correlation Example – Sum (1)

 $x_{1}(t) = \sin(\omega t)$ $x_{2}(t) = \sin(\omega t + \frac{\pi}{2}) = \cos(\omega t)$ $x_{3}(t) = \sin(\omega t + \frac{\pi}{4})$ $x_{4}(t) = \sin(\omega t + \pi)$

$$F(t) = x_1(t) + x_2(t) = \sin(\omega t) + \sin(\omega t + \frac{\pi}{2})$$

= $2\sin(\frac{(2\omega t + \pi/2)}{2})\cos(-\pi/4)$
= $2\sin(\omega t + \frac{\pi}{4})\cos(\frac{-\pi}{4}) = 0.707 \cdot 2\sin(\omega t + \frac{\pi}{4})$

sum of uncorrelated signals

The signal power of the sum depends strongly on whether two signals are correlated

positively correlated vs. uncorrelated

$$R_{12}(0) = \frac{1}{2\pi} \int_{2\pi} \sin(\omega t) \cos(\omega t) dt = 0$$

$$R_{13}(0) = \frac{1}{2\pi} \int_{2\pi} \sin(\omega t) \sin(\omega t + \pi/4) dt = 0.354$$

$$R_{14}(0) = \frac{1}{2\pi} \int_{2\pi} \sin(\omega t) \sin(\omega t + \pi) dt = -0.5$$

$$g(t) = x_1(t) + x_3(t) = \sin(\omega t) + \sin(\omega t + \frac{\pi}{4})$$

= $2\sin(\frac{(2\omega t + \pi/4)}{2})\cos(-\pi/8)$
= $2\sin(\omega t + \frac{\pi}{8})\cos(\frac{-\pi}{8}) = 0.924 \cdot 2\sin(\omega t + \frac{\pi}{4})$
sum of positively correlated signals

$$h(t) = x_1(t) + x_4(t) = \sin(\omega t) + \sin(\omega t + \pi)$$
$$= \sin(\omega t) - \sin(\omega t)$$
$$= 0$$

sum of negatively correlated signals

Correlation Example – Sum (2)

CT Correlation (2B)

Correlation Example – Product

product of <u>negatively</u> correlated signals

Positively correlated

- the same direction
- **Average of product > Product of averages**

Negatively correlated

- the opposite direction
- ↓ Average of product < Product of averages

Uncorrelated

Average of product ≅ Product of averages

Correlation Example – Mean, Variance

CT Correlation (2B)

18

Correlation Example – Correlation Coefficients

$$\begin{aligned} x_1(t) &= \sin(\omega t) \qquad x_2(t) = \sin(\omega t + \frac{\pi}{2}) \qquad x_3(t) = \sin(\omega t + \frac{\pi}{4}) \qquad x_4(t) = \sin(\omega t + \pi) \\ \sigma_1^2 &= \frac{1}{2\pi} \int_{2\pi} \sin^2(\omega t) dt = 0.5 \quad m_1 = 0 \\ \sigma_2^2 &= \frac{1}{2\pi} \int_{2\pi} \sin^2(\omega t + \frac{\pi}{2}) dt = 0.5 \quad m_1 = 0 \\ \sigma_3^2 &= \frac{1}{2\pi} \int_{2\pi} \sin^2(\omega t + \frac{\pi}{4}) dt = 0.5 \quad m_3 = 0 \\ \sigma_4^2 &= \frac{1}{2\pi} \int_{2\pi} \sin^2(\omega t + \pi) dt = 0.5 \quad m_4 = 0 \end{aligned}$$

19

$$\rho_{XY} = \frac{\boldsymbol{E}[(X - m_x)(Y - m_Y)]}{\sigma_X \sigma_Y}$$

$$\rho_{12} = \frac{E[x_1(t)x_2(t)]}{\sigma_1\sigma_2} = \frac{R_{12}(0)}{0.5} = 0$$

$$\rho_{13} = \frac{E[x_1(t)x_3(t)]}{\sigma_1\sigma_3} = \frac{R_{13}(0)}{0.5} = 0.177$$

$$\rho_{14} = \frac{E[x_1(t)x_4(t)]}{\sigma_1\sigma_4} = \frac{R_{14}(0)}{0.5} = -1$$

Correlation Example – Auto & Cross Correlation

special case: sinusoidal signals $x_1(t) = \sin(\omega t)$ $x_2(t) = \sin(\omega t + \frac{\pi}{2})$ $x_1(t+\frac{\pi}{2\omega}) = \sin(\omega(t+\frac{\pi}{2\omega}))$ $x_1(t + \frac{\pi}{4\omega}) = \sin(\omega(t + \frac{\pi}{4\omega}))$ $x_3(t) = \sin(\omega t + \frac{\pi}{4})$ ← $x_1(t+\frac{\pi}{\omega}) = \sin(\omega(t+\frac{\pi}{\omega}))$ $x_4(t) = \sin(\omega t + \pi)$ ← $R_{12}(0) = \frac{1}{2\pi} \int_{2\pi} \sin(\omega t) \cos(\omega t) dt = 0$ $R_{11}\left(\frac{\pi}{2\omega}\right)$ $R_{11}\left(\frac{\pi}{4\omega}\right)$ $R_{13}(0) = \frac{1}{2\pi} \int_{2\pi} \sin(\omega t) \sin(\omega t + \pi/4) dt = 0.354$ ($R_{14}(0) = \frac{1}{2\pi} \int_{2\pi} \sin(\omega t) \sin(\omega t + \pi) dt = -0.5$ $R_{11}\left(\frac{\pi}{\omega}\right)$

CrossCorrelation

AutoCorrelation

Random Signal

Random Signal

No exact description of the signal

But we can estimate

Autocorrelation Energy spectral densities (**ESD**) Power spectral densities **PSD**)

Total Energy

$$E_x = \int_{-\infty}^{+\infty} \Psi_x(f) df$$

Average Power

$$P_x = \int_{-\infty}^{+\infty} G_x(f) d f$$

energy spectral densities

power spectral densities

CT Correlation (2B)

Energy Spectral Density (ESD)

Parseval's Theorem

$$E_{x} = \int_{-\infty}^{+\infty} |x(t)|^{2} dt = \int_{-\infty}^{+\infty} |\underline{X(f)}|^{2} df$$

Energy Spectral Density

Real x(t)
$$\implies$$
 even, non-negative, real $\Psi_x(f)$

 $|X(f)|^2 = \Psi_x(f)$

$$E_{x} = 2 \int_{0}^{+\infty} \Psi_{x}(f) df$$

$$E_{y} = 2 \int_{0}^{+\infty} \Psi_{y}(f) df = 2 \int_{0}^{+\infty} |Y(f)|^{2} df$$

$$= 2 \int_{0}^{+\infty} |H(f)|^{2} X(f)|^{2} df = 2 \int_{0}^{+\infty} |H(f)| |X(f)|^{2} df$$

$$= 2 \int_{0}^{+\infty} |H(f)|^{2} \Psi_{x}(f) df$$

 $\Psi_{y}(f) = H(f)H^{*}(f)\Psi_{x}(f)$

 $\psi_{x}(f)$ $\longrightarrow \Delta f$ $-f_{1} + f_{1}$

The distribution of signal energy versus frequency

Conceptual ESD Estimation

Parseval's Theorem

$$E_{x} = \int_{-\infty}^{+\infty} |x(t)|^{2} dt = \int_{-\infty}^{+\infty} |\underline{X(f)}|^{2} df$$

Energy Spectral Density

$$\frac{|X(f)|^2}{|X(f)|^2} = \Psi_x(f)$$

CT Correlation (2B)

ESD and Autocorrelation

$$R_{x}(t) \qquad \longleftrightarrow \qquad \Psi_{x}(f) \qquad (= |X(f)|^{2})$$
$$R_{x}(t) \qquad \longleftrightarrow \qquad X^{*}(f)X(f)$$

$$R_{x}(t) = x(-t) * x(t) = \int_{-\infty}^{+\infty} x(-\tau) x(t-\tau) d\tau \implies R_{x}(t) = \int_{-\infty}^{+\infty} x(\tau) x(\tau+t) d\tau$$

Power Spectral Density (PSD)

Many signals are considered as a **power signal** The **steady state** signals activated for a long time ago will expected to continue

$$x_{T}(t) = rect\left(\frac{t}{T}\right)x(t) = \begin{cases} x(t) & |t| < \frac{T}{2} \\ 0 & \end{cases}$$

The **truncated version** of x(t)

$$X_{T}(f) = \int_{-\infty}^{+\infty} x_{T}(\tau) e^{-2\pi f t} dt = \int_{-T/2}^{+T/2} x_{T}(\tau) e^{-2\pi f t} dt$$

$$G_{X_{T}}(f) = \frac{\Psi_{X_{T}}}{T} = \frac{1}{T} |X_{T}(f)|^{2}$$

 $\Psi_{x_{\tau}}(f) = |X_{T}(f)|^{2}$

The **PSD** of a **truncated version** of x(t)

$$G_{X}(f) = \lim_{T \to \infty} G_{X_{T}}(f) = \lim_{T \to \infty} \frac{1}{T} |X_{T}(f)|^{2}$$
 The estimated **PSE**

The power of a finite signal power signal in a bandwidth f_L to f_H

CT Correlation (2B)

 $2\int^{f_{H}}G(f)df$

Conceptual PSD Estimation

Parseval's Theorem

$$E_{x_{T}} = \int_{-\infty}^{+\infty} |x_{T}(t)|^{2} dt = \int_{-\infty}^{+\infty} |X_{T}(f)|^{2} df$$

Energy Spectral Density

$$\frac{|X_{T}(f)|^{2}}{T} = \Psi_{x_{T}}(f) \qquad G_{X_{T}}(f) = \frac{\Psi_{X_{T}}}{T} = \frac{1}{T}|X_{T}(f)|^{2}$$

$$\begin{array}{c} x(t) \\ \hline \\ H_1(f) \end{array} \begin{array}{c} y(t) \\ \hline \\ \end{array} P_y = \frac{1}{T} \int_{-\infty}^{+\infty} |y(t)|^2 dt \qquad P_y / \Delta f \approx G_x(f_1) \end{array}$$

CT Correlation (2B)

26

ESD and Band-pass Filtering

$$E_{y} = 2\int_{0}^{+\infty} \Psi_{y}(f) df = 2\int_{0}^{+\infty} |Y(f)|^{2} df = 2\int_{0}^{+\infty} |H(f)X(f)|^{2} df$$
$$E_{y} = 2\int_{0}^{+\infty} |H(f)|^{2} \Psi_{x}(f) df = 2\int_{f_{L}}^{f_{H}} \Psi_{x}(f) df$$

$$\Psi_{y}(f) = |H(f)|^{2} \Psi_{x}(f) = H(f) H^{*}(f) \Psi_{x}(f)$$

A description of the signal energy versus frequency How the signal energy is distributed in frequency

$$G_{y}(f) = |H(f)|^{2}G_{x}(f) = H(f)H^{*}(f)G_{x}(f)$$

A description of the signal energy versus frequency How the signal energy is distributed in frequency

References

- [1] http://en.wikipedia.org/
- [2] M.J. Roberts, Signals and Systems,