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Correlation

How signals move
relative to each other

Positively correlated the same direction

Average of product > product of averages

Negatively correlated  the opposite direction

Average of product < product of averages

Uncorrelated
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CrossCorrelation for Power Signals

Energy Signal Power Signal
R,(x) = [ x(t)y (t+7)d R, (1) = %ii%fT x(t)y*(t+ 1) dt
+ oo . 1 N
— j‘ X(t—T)y*<t> dt = r_,lwl_I)I:onT X(t—T)y (t)dt
Power Signal  real x(t), y(¢)

Energy Signal  real x(t), y(t)
R, (t) = T x(t)y(t+t)dt R, (T) = lim%fT x(t)y(t+T)dt

v 1
= lim — t—t)yl(t)dt
Tl-?;lo I -[T X( )y( )

= [ x(e—v)y(t) de

—00

Periodic Power Signal

R, (1) = o J, x(t)y(t+ ) di
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Correlation and Convolution

real x(t), y(t)

Correlation R,(v) = [ x()y(rv)de = [ xle=v)y(e)de

— —o0

Convolution x(t)xy(t) = f x(t—t)y(t)dx
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Correlation for Periodic Power Signals

R, (t) = %IT x(t)y(t+T) dt Periodic Power Signal
Circular Convolution
R, (1) = Z[x(=)xy(x)] x(t) « y(6) SO TX[K]Y[K]
R (1) i X'IKIYIK]  xln]  yla] ST N,¥[kIX[K]
¥ 1
R, (T) = f x(t)y(t+t)dt R,(t) = TIT x(t)y(e+t) de
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Correlation for Power & Energy Signals

One signal — a power signal Use the Energy Signal Version
The other — an energy signal

+ oo

R,(x) = [ x(t)ylt+ ) de

— o0
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Autocorrelation

Energy Signal

+ o0

R (T) = f x(t)x(t+7) dt

— 0

total signal energy

R.(0) = | x(0) de

Power Signal

R,(%) = lim = [, x(0)x(t+7)d

average signal power

R _(0) = lim%f x*(t) dt

T

) 1
R (—7) = }15)10 ?J‘T x(t)x(t—7) dt
R (+7) = lim %f x(s+T)x(s)ds
T

T

R, (7) = Enf x(t—ty)x(t—t,+ ) dt
R (1) = limf x(s)x(s+1)ds

T >
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AutoCorrelation for Power Signals

R (1) = % .. sin(t)sin(t+ 1) dt

Positively correlated

Positively correlated

A

°'j\\ LA

Uncorrelated Negatively correlated
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Autocorrelation of Sinusoids

x(t) = Ajcos(w,t+ 0,) + A,cos(w,t+ 0,) = x,(t) + x,(t)

x(t)x(t+ 1) = {A,cos(w,t+ 0,) + A,cos(w,t+ 0,)} {A ,cos(w,(t+T)+ 0,) + A,cos(w,(t+T)+ 0,)}

A, cos(w,t+ 0,)A,cos(w,(t+T)+ 0,) + A,cos(w,t+ 0,)A,cos(w,(t+T)+ 0,)
+

A, cos(m,t+ 0,)A,cos(w,(t+T)+ 0,) + A,cos(w,t+ 0,)A cos(w,(t+ 1)+ 0,)

IT A,cos(w,t+ 0,)A,cos(w,(t+ 1)+ 0,)dt =

0
fT A,cos(w,t + 0,) A, cos(w,(t+T)+ 0,)dt = 0

R,(t) = Ry(t) + Ry(7) x,(t) = Agcos(2mf,t+ 0,)
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Autocorrelation of Random Signals

Mz

.cos(w, t+ 0,)

N
= > R
k=1
autocorrelation of akCOS((DkH Ok)

independent of choice of 6,

' §)
random phase shift Y x,(t) different look

i a
the same amplitudes R, (v) similar look

the same frequencies

the amplitudes a can be observed

similar look but not exactly the same

describes a signal generally, but not exactly
— suitable for a random signal
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Autocorrelation Examples

AWGN signal

changes rapidly with time
current value has no correlation with past or future values
even at very short time period

random fluctuation except large peak at t =0

ASK signal : sinusoid multiplied with rectangular pulse

regardless of sin or cos, the autocorrelation is always even function

cos wave multiplied by a rhombus pulse
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CrossCorrelation

R, (t) = R, (-7)

The largest peak occurs at a shift which is exactly the amount of shift
Between x(t) and y(t)

The signal power of the sum depends strongly on whether two signals are correlated

Positively correlated vs. uncorrelated
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Pearson's product-moment coefficient
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Correlation Example - Sum (1)

x,(t) = sin(wt) R,(0) = % ,.sin(wt)cos(wt) dt = 0

x,(t) = sin(wt+%) = cos(wt) .

() = sin(we+ ) R.,(0) = 5 .- sin(wt)sin(wt+m/4) dt = 0.354
x,(t) = sin(wt+ m) R,(0) = 2_1n L sin(wt)sin(ot+mx)dt = —0.5

f(t) = x,(t)+ x,(t) = sin(wt) + sin((ot+%) g(t) = x,(t)+ x,(t) = sin(wt) + sin(wt+ %)

2sin (2224 cos (—/8)

2wt+m/2)

= 2sin (2292 cos(—nt/4)

2sin(wt+%)cos(=*) = 0.924-2sin(wt+%)

= 2sin(wt+%)cos(=%) = 0.707-2sin(wt+%)

sum of uncorrelated signals sum of positively correlated signals

The signal power of the sum depends strongly h(t) = x,(t)+ x,(t) = sin(wt) + sin(wt+x)

on whether two signals are correlated , ,
= sin(wt)—sin(wt)

positively correlated vs. uncorrelated — 0

sum of negatively correlated signals

1 5 Young Won Lim
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Correlation Example - Sum (2)

0.707-2

1

R,(0) = L sin(wt)sin(wt+x) dt

1

R,(0) = ﬁ‘fzﬂsin(mt)cos(mt)dt =0

2q 2

x1(t) + x(t)
10 5 o x,(t) + x,(t) [ 16

both signals
increase or
decrease

"
RAS

one
increases,
the other

decreases

(sin(t)d-(sin(t)-4*%pi"cos(1)/4)(2%pi)

1
271

R,(0) = fmsin(oot)sin(ooﬁ n/4) dt

= 0.354

0.924-2
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Correlation Example - Product

product of uncorrelated signals

sin(%omega t)

1 ‘ ! !
o SN :

: f f f E[x(t)]
0.5 N A A R N / """""""" 1
_1_10 _; sin(%omegé t + %pi/2) 5 10

1 1 1 1

05 [ \ —————————————————— NN 1

0 ; ; ; E[x,(t)]
-0.5 [ TN [ AR e N 7

-1_10 sirjg%omega t) * sirB%omega t+ %pé/Z) 10

1 1 1 1

0.5 oo S T s .

0 /\ : E[x,(t)x,(t)]
0.5 [ e e e e e

-1

-10 5 0 5 10

product of negatively correlated signals

sin(%omega t)

! / 3 3
0.5 [ TN /2 N AR U 7
0 ; ; ; E[x(¢)]
0.5 [N\ R e / ————————————
_1_10 ; sin(%omeéa t + %pi) 5 10
1 ! ‘
A /S N Elx(c)]
0 ! .
05 e S N
—1_10 sig(%omega t) * sié(%omega t+ %éi) 10
1 1 1
0.5 o I 1 E[x,(t)x,(t)]
0 ; ; @
° \ i / |
-10 -5 0 5 10
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product of positively correlated signals

sin(%omega t)

1 ! 1 1
o5 e . ]
0 : ‘ :
05 N e NN\ / ,,,,,,,,,,,,, E[x(t)]
-1_10 ; sin(%omegé t + %pi/4) 5 10
1 ‘ 1 1
N A S e
e e E[x,(0)]
0.5 [\ AN AN C X b
-1_10 sing¥%omega t) * siny%omega t + %pi/4) 10
1 ‘ 1 1
I AN AN A\
: ; | | o
osf S S R 1 E[x()xs(c)]
-10 -5 0 5 10

Positively correlated

the same direction
1T Average of product > Product of averages
Negatively correlated

the opposite direction
I Average of product < Product of averages

Uncorrelated
Average of product = Product of averages
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Correlation Example — Mean, Variance

e

-10 -5 0
sirf(t+pi)
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Correlation Example — Correlation Coefficients

sin(wt)  x,(t) = sin(wt+%)  x,(t) = sin(wt+Z)  x,(t) = sin(wt+n)

b
5
—

~
SN——

[l

2 1 . 2
= — t)dt = 0.5 =0
o, anznsm (wt) m R,(0) = —21n fmsin(oot)cos(u)t)dt =0

A
0y = 5[, sin*(we+ D) de = 05 m, =0 R,(0) = if2nsin(wt)sin(wt+:rc/4) dt = 0.354

2 _ 1 in? it _ — R,(0) = — [ si i dt = —0.5
ol = ﬂ-[znsm (wt+ Z) dt = 05 m, =0 4(0) 2nJ.27[51n(u)t)51n(u)t+ﬂ:) t :

1 .
o, = %Lnsmz(mﬁ n)dt = 05 m, =0

E[(X — mx)(Y — mY)]

Pxy =
C)-X(jY
1> ‘ sin(t+pi}2) —
sin(t+pi/4) —

1h sin(t+pi) — |

X5(t) 0, = E[x,(t)x,(t)] _ R,,(0) ~ 0
0.5 1 12 0102 0.5
ok i

X(t) . E[Xl(t)x3(t)] . R13(0) _
-05r 1 p13 - 0_10_3 - 0.5 = 0.177
i) _ El0x(0] _ RiO) _
-15 ‘ ‘ ‘ ‘ ‘ Pra = 0,04 B 0.5 B
-15 -1 0.5 0 0.5 1 1.5

sin(t) x4 (t)
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Correlation Example — Auto & Cross Correlation

special case: sinusoidal signals

x,(t) = sin(wt)

x,(t) = sin(wt+ %) = x,(t+2) = sin(o(t+ X))
x5(t) = sin(wt+ =) = x(t+ ) = sin(o(t+ %))
x,(t) = sin(wt+ m) - x,(t+2) = sin(o(t+2))
R,(0) = ifhsin(mt)cos(u)t) dt = 0 - R, (&)

R,(0) = ifmsin((ut)sin(mﬁ w/4)de = 0354 = Ruld)

R, (0) = i [, sin(wt)sin(we+x)de = —0.5 = R, (%)
CrossCorrelation AutoCorrelation
: Young Won Lim
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Random Signal

Random Signal

No exact description of the signal

: Autocorrelation
But we can estimate { Energy spectral densities (ESD)
Power spectral densities PSD)
Total Energy Average Power
E,= Jw(f)df P.= JG.(f)df
energy spectral densities power spectral densities
Ly, (f) LG,(r)
Af
_ Af
Y P
1 1 > >
- f1 + f1 - f1 + f1
: Young Won Lim
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Energy Spectral Density (ESD)

Parseval’s Theorem AW, (f)

+ oo

E, = [Ix(¢f*de = [IX(f)df

: Af
Energy Spectral Density | X | f)2 =W (f)
| | |
_fl + fl
Real x(t) even, non-negative, real lPX( f ) The distribution of signal
E = 2+ji° W (f)df energy versus frequency
E, =2 w(f)df = 2[¥(ffdr x(t) y(t)
w 4o — h(t) —
=2[IH(f)X(fI’df = 2[|H(f)IX(f)df
=2 [IH(FPw,(f)df
w.(f) w,(f)
w,(f) = H(f)H (f)¥,(f) —> |[H(f]f —>
CT Correlation (2B) 22 Young Won Lim
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Conceptual ESD Estimation

Parseval’s Theorem

+ oo

E, = [Ix(¢f*de = [IX(f)df

Energy Spectral Density | X | f)z =W (f)

x(t) y(t) ror
—» H(f) —» E, = [ly(t)’'dt EJAf ~ w(f)

A H,(f) RN
1 N Ly
| | > | | >
—f, +f - f, + f,
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ESD and Autocorrelation
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Power Spectral Density (PSD)

Many signals are considered as a power signal
The steady state signals activated for a long time ago will expected to continue

x(t) |t\ < —
x.(t) = rect = x(t) = 2 The truncated version of x(t)
0
6B +T/2
X.(f) = fxT(r)e_Z“ftdtz f x,(t)e ™t dt
e ~T/2
¥ (f) = |X.(f) The ESD of a truncated version of x(t)
Wy 1 2
Gy (f) = —al ?\XT( f) The PSD of a truncated version of x(t)

G,(f) = limGy (f) = lim %|XT(f)\2 The estimated PSD

T > T >0
fu
2f G( f)d f The power of a finite signal power signal in a bandwidth f, to f,
fi
: Young Won Lim
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Conceptual PSD Estimation

Parseval’s Theorem

f\xT Ydt = U_a_f *d f

Energy Spectral Density XI! Z )‘2 = ‘PXT(IC) GXT(f) = TT = ?‘XT”)‘Z

X(t) .V(t) 17 5
—» H(f) —» P, = ;_f\y(tﬂ dt  PJIAf ~ G,f,)

A Hi(f) A G(f,)

1 | 4<—Af
1 1 > >
_fl +f1 _f1 +f1
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ESD and Band-pass Filtering

eyl
<
[
N
+
ot—ﬁ8
T
\h
=
=
>
\h
Q,
\h
[
N
—
.=
*
Q
\h

A description of the signal energy versus frequency
How the signal energy is distributed in frequency
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PSD and Band-pass Filtering

G,(f) = [H(fI'G(f) = H(f)H"(f)G,(f)

A description of the signal energy versus frequency
How the signal energy is distributed in frequency
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