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Power and Taylor Series 

∑
n=0

∞

cn(z−a)
n

= c0 + c1(z−a) + c2(z−a)2 + ⋯

always converges if ∣z − a∣< R

can also be differentiated

∑
n=0

∞ f (n)
(a)

n!
(z−a)

n

= f (a) + f '(a)(z−a) +
f ' '(a)

2
(z−a)2 + ⋯

f (z) = ∑
n=0

∞ f (n)
(a)

n!
(z−a)

n

only valid if the series converges

Power Series Taylor Series
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Power and Taylor Series 

∑
n=0

∞

cn(z−a)
n

Power Series

= c0 + c1(z−a) + c2(z−a)2 + ⋯

always converges if ∣z − a∣< R

can also be differentiated

Taylor Series

∑
n=0

∞ f (n)
(a)

n!
(z−a)

n

= f (a) + f '(a)(z−a) +
f ' '(a)

2
(z−a)2 + ⋯

f (z) = ∑
n=0

∞ f (n)
(a)

n!
(z−a)

n

only valid if the series converges

1
z

=
1

a+ (z−a)
=

1
a

1

1+ ( z−aa )
= ∑

n=0

∞ (−1)
n

a ( z−aa )
n

ez
= ∑

n=0

∞ zn

n!

f (z ) = ez
f (n)

(0) = 1
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Complex Log : ln z

Power Series

converges if ∣z − a∣<∣a∣

for any

Taylor Series

1
z

= ∑
n=0

∞ (−1)
n

a ( z−a
a )

n

ez
= ∑

n=0

∞ zn

n!

a≠0

for a sufficiently far away from 0
the size of the disk can be made big

 converges for all z

: inverse of : integral of the power series

  expansion of        at 

ln z ln z ez

1
z

z = 1

d
d z

(ln z) =
1
z ew = z w = ln z
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Polar Representation 

z = x + i y

= r cosθ + i r sinθ

= r (cosθ + isinθ)

z1 = r 1e
iθ1

z2 = r2e
iθ2

z1z2 = r1e
iθ1r 2e

iθ2

z1

z2

=
r1e

iθ1

r2e
iθ2

=
r1
r2
ei(θ1 − θ2)

= r 1r2e
i (θ1 + θ2)

x = r cosθ

y = r sinθ

θ

= r eiθ

= ∣z∣eiarg (z )
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Principal Argument

z = x+ i y

= r cosθ + ir sinθ

= r (cosθ + isinθ)

many angles 

θ = arg(z )
0≤ arg(z) < 2π

−π ≤ Arg(z) < +π

Principal Argument Arg(z )

unique angles

Argument 
ex)

= Arg(z ) + 2kπ

arg(z) : to be a function of z,
  it needs to be uniquely defined 
  for every z, by choosing its range

free to choose a more convenient definition 
for a particular problem.

= r eiθ

= ∣z∣ei arg(z )

by specifying its range
 an argument can be uniquely defined 

θ = arg(z )

0≤ arg(z) < 2πunique angles

The special argument
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Complex Log 

z = ew = eu+ iv

= ∣z∣ ei arg (z )

= ∣eu
⋅ei v∣ eiarg (eu⋅ei v)

= eu eiarg (ei v)

∣z∣ = eu arg(z) = arg(ei v)

v = arg(z)+ 2kπu = ln∣z∣

= ∣eu+iv∣ eiarg(eu+i v
)

∣eu∣ = 1, arg(eu) = 0

z = ∣z∣ ei arg (z) = eu eiarg (ei v) z = eln∣z∣ ei(arg(z )+2kπ)

w = u+ i v

2kπ is necessary 
assuming arg is uniquely defined 

with its range specified
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Complex Log : ln z

ln z = ln∣z∣ + i(arg(z) + 2kπ)

z = eln∣z∣+ i(arg (z ) + 2kπ)

z = eln∣z∣+ iarg(z)

ln z = ln∣z∣+ iarg(z)

many angles 

argument unique 

z = ∣z∣ ei arg (z) = eu eiarg (ei v) z = eln∣z∣ ei(arg(z)+2kπ)

2kπ is needed : 
assuming arg is uniquely defined 

with its range specified

z = ∣z∣ ei arg(z)

ln z = ln∣z∣+ iarg(z)



Complex Logs (5A) 10 Young Won Lim
10/17/13

A mapping of ln z 

ln (2)ln (1/2)

+π/4+3π/4

−π/4−3π/4

+π/4

+3π/4

−3π/4

−π/4

+π

−π

1 2.5

ln2 = 0.693



Complex Logs (5A) 11 Young Won Lim
10/17/13

z = ew w = ln z ab
= ew ab

= ln z

Complex Powers

z = ew
= elnz ab = ew = elna

b

= eb lna

zb = ew = eln zb

= eb ln z

zb
= eb(ln∣z∣+ iarg(z))

= eb ln∣z∣ eibarg(z)

az = ew = elnaz

= ez lna

az
= ez (ln∣a∣+ i arg(a))

= ez ln∣a∣ ei z arg(a)

z = eln∣z∣ eiarg (z)

zb = eb ln∣z∣ eibarg(z)

az
= ez ln∣a∣ ei zarg(a)

real eln∣z∣

ez ln∣a∣

eb ln∣z∣

in general not real
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Complex Logs Example

free to choose more convenient definition 
for a problem

eπ−2kπ
= e+πe−2kπ

−i(π −2kπ)

1 2.5

+3 π

+π

−π

−3 π

e+π

−iπ (Principal Argument)

(Principal Argument)

−1

ln (−1)

ln (−1) = ln∣−1∣+ i arg(−1)

(−1) = e−iπ+i2k π

(−1)
i
= ei ln (−1)

= ei(−i(π−2kπ))

(+1)

(+i)

(−1)

(−i)

= e0

= e+iπ /2

= e−iπ

= e−iπ /2

e+π

(−1)
i

(+1)
i

(+i)i

(−1)
i

(−i)i

= e0

= e−π/2

= e+π

= e+π/2

(−i)i

0.207

23.1

4.81

(i)i (1)
i
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Complex Power Examples : zi

(+1)
i

(+i)i

(−1)
i

(−i)i

(+1) = e+i(0−2k π)

(+i) = e+i(π /2−2kπ)

(−1) = e−i(π−2kπ)

(−i)i = e−i(π/2−2kπ)

(+1)
i

(+i)i

(−1)
i

(−i)i

(+2)
i

(+2 i)i

(−2)
i

(−2 i)i

(+2)

(+2 i)

(−2)

(−2 i)

(+2)
i

(+2 i)i

(−2)
i

(−2 i)i

= eln2+ i (0−2kπ)

= eln2+ i (π/2−2kπ)

= eln2− i (π−2k π)

= eln2− i (π/2−2kπ)

= e0

= e−π/2

= e+π

= e+π/2

= ei(ln2+i(0−2kπ))

= ei(ln2+i(π/2−2kπ))

= ei(ln2−i(π−2k π))

= ei(ln2−i(π/2−2kπ))

= e0

= e−π/2

= e+π

= e+π/2

ln2 = 0.693 cos(ln2) = 0.769

sin(ln2) = 0.639

eπ
= 20.140

eπ/2
= 4.810

= ei ln (+1)

= ei ln (+i)

= ei ln (−1)

= ei ln (−i)

e+2kπ

e+2kπ

e−2kπ

e−2kπ

e+2kπei ln2

e+2kπei ln2

e−2kπei ln2

e−2kπei ln2

ei ln2

ei ln2

ei ln2

ei ln2

= e0

= e−π/2

= e+π

= e+π/2

= e0

= e−π/2

= e+π

= e+π/2
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= a=∣a∣eiarg(a)

Complex Roots

zn − a = 0

z = ∣a∣1 /nei(arg (a) / n+2kπ / n)

zn = r neinθ

rn = ∣a∣ nθ = arg(a) + 2kπ

r =∣a∣
1
n θ =

arg(a)

n
+
2kπ

n

1−1

z4
=−1

z = −π
4

+
2kπ

4

1−1
k=0

k=1

k=3

k=2
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Complex Roots: z4 = -1

z = −π
4

+
2kπ

4

1−1
k=0

k=1

k=3

k=2

1−1

z4
=−1

−π
4

−π

2kπ

4
= 0

2kπ

4
= π
2

2kπ

4
= π

2kπ

4
=
3 π

2

k=0

k=1

k=3

k=2

r =∣a∣
1
n θ =

arg(a)

n
+
2kπ

n

zn − a = 0

z = ∣a∣1 /nei(arg (a) / n+2kπ / n)
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Complex Roots : z4 = 1

r =∣a∣
1
4

θ = 1
4
(−π + 2kπ) z4

=−1

θ0 =−1
4
π

θ1 =+1
4
π

θ2 =+3
4
π

θ3 =+5
4
π

θ0
4 =−π

θ1
4 =−π

θ2
4 =−π

θ3
4 =−π

θi
1

θi
2

θi
3

θi
4

0≤ arg (z ) < 2π

2π ≤ arg(z ) < 4π

4π ≤ arg (z ) < 6π

6π ≤ arg (z ) < 8π

: −π

: +π

: +3π

: 5π
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Complex Powers: z½

∮
∣z∣=1

√z dz = ∫θ0

θ0+2π

eiθ/2 ieiθ dθ

= ∫θ0

θ0+2π

iei3θ/2 dθ = [23 ei3θ/2 ]
θ0

θ0+2π

=
2
3

(ei3(θ0+2π)/2
− ei3θ0/2)

=
2
3
ei3θ0 /2(ei3π − 1) = −

4
3
ei3θ0 /2

the circular integration depends on where 
the closed circle begins θ0

√z = ∣z∣
1/2
e+i arg(z)/2

θ0 ≤ arg(z) < θ0 + 2π

θ0 < arg(z) ≤ θ0 + 2π

the definition of         also depends on √z θ0

implicitly assumed definition of √z
depends on θ0
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Complex Powers: z½

y2
= x w2

= z

y = +√x
y = −√x

w = +√z
w = −√z

real x ≥ 0 complex z

√x ≥ 0 ℜ{√z } ≥ 0

√z = ∣z∣
1/2
e+i arg(z)/2

−π < arg(z) < +π

if we would want this, then

−π/2 < arg(z) /2 < +π /2

but we would have excluded all 
the pure  imaginary numbers 
also.

√z = ∣z∣
1/2
e+i arg(z)/2

−π < arg(z) ≤ +π

The MATLAB's defintion

a discontinuity in       when
the negative real axis

√ z

√z = ∣z∣
1/2
e+i arg(z)/2

−π ≤ arg(z) < +π

a discontinuity in       when
the positive real axis

√ z
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Branch Cut

√z = ∣z∣
1/2
e+i arg(z)/2

−π < arg(z) ≤ +π

1

jump

√z = ∣z∣
1/2
e+i arg(z)/2

0 < arg(z) ≤ +2π

1

jump

branch pointbranch cut branch point

branch cut

if we go around a branch point, then there is 
always a discontinuity somewhere 
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Winding Number (z½)

r : 1 → 2

θ :0 → π/4

1

r : 1 → 2

θ :0 → π/4+ 2π

r : 1 → 2

θ :0 → π/4+ 4π

r : 1 → 2

θ :0 → π/4− 6π

z1 = 2 e+iπ/4

Consider computing the square root of points along the different paths that are continuous

√z = √r e+i θ
= √r e+iθ/2

√z = √r e+i(θ+2π)
= √r e+iθ/2 eiπ

√z1 =+√2 e+i π/8

√z1 =−√2 e+i π/8

two classes of paths 

odd number of rounding

two classes of paths 

even number of rounding

z1 = 2 e+iπ/4 z1 = 2 e+iπ/4 z1 = 2 e+iπ/4



Complex Logs (5A) 21 Young Won Lim
10/17/13

Range of Arguments (z½)

r =∣2∣
1
2

θ = 1
2 (

π
4 + 2kπ)

z2 = 2⋅e+ j π /4

θ0 =+ 1
2
( 1
4
π)

θ1 =+1
2
( 9
4
π)

θ0
2 = 1

4
π

θ1
2 = 9

4
π

θi
1

θi
2

0≤ arg(z ) < 2π : 1
4
π

2π ≤ arg(z ) < 4π : 9
4
π

a closed loop in a 
Riemann surface

1
4 π

9
4 π

1
8 π

9
8 π odd number of rounding

even number of rounding

+=
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Domain & Range Complex Planes (z½)

−π ≤ θ <+π

+π ≤ θ <+3π

z z1/2

√z = √r e+iθ
= √r e+iθ/2

√z = √r e+iθ+2 π
= √r e+iθ/2 eiπ

+√r cos θ
2

+ i √r sin θ
2

−√r cos θ
2

− i √r sin θ
2

−cosθ

+cosθ

−cos θ
2

+cos θ
2

Domain
Complex
Plane

Range
Complex
Plane

−π ≤ θ <+π

+π ≤ θ <+3π

−1
2
π ≤ θ

2
<+1

2
π

+1
2
π ≤ θ

2
<+3

2
π

−π ≤ θ <+π

+π ≤ θ <+3π

ℜ{√ z}=+√r cos θ
2

ℜ{√ z }=−√r cos θ
2

ℑ{√ z }=+√r sin θ
2

ℑ{√ z }=−√r sin θ
2
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Riemann Surface (z½)  - (1)  

Riemann surface for the function ƒ(z) = √z. 
The two horizontal axes represent the real 
and imaginary parts of z, while the vertical 
axis represents the real part of √z. For the 
imaginary part of √z, rotate the plot 180° 
around the vertical axis. [wikipedia.org]

−cos θ
2

+cos θ
2

−cos θ
2

+cos θ
2

For visualizing a multivalued function.

a geometric construction that permits surfaces 
to be the domain or range of a multivalued 
function. 

ℜ{√ z }=+√r cos θ
2

ℜ{√ z }=−√r cos θ
2
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Riemann Surface  (z½)    - (2)   

http://scipp.ucsc.edu/~haber/ph116A/ComplexFunBranchTheory.pdf

xy

ℜ(√ z )

−π ≤ θ <+π

−π ≤ θ <+π

−cos θ
2

+cos θ
2

Domain R. surface

ℑ{√ z}

Range

ℜ{√ z}
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Riemann Surface  (z½)    - (3)   

a

b

http://scipp.ucsc.edu/~haber/ph116A/ComplexFunBranchTheory.pdf

z z1/2

xy

ℜ(√ z )

−π ≤ θ <+π

+π ≤ θ <+3π

c a

b

ℜ{√ z }=−cos θ
2

ℜ{√ z }=+cos θ
2

Domain Range

c
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Riemann Surface  (z½)    - (4)   

a

b

c

http://scipp.ucsc.edu/~haber/ph116A/ComplexFunBranchTheory.pdf

xy

ℜ(√ z )

This Riemann surface makes “full square 
root function” continuous for all z ≠ 0.

between the point a and the point b, the 
domain switches from the upper half-plane 
to the lower half-plane.

no other way to get from the point a to the 
point b except going counterclockwise.

ab

c

−π ≤ θ <+π

+π ≤ θ <+3π

c a

b

Domain Range



Complex Logs (5A) 27 Young Won Lim
10/17/13

Riemann Surface

Holomorphic functions 
(conformal maps, regular function) 
Riemann surfaces are nowadays considered 
the natural setting for studying the global 
behavior of these functions, especially multi-
valued functions such as the square root and 
other algebraic functions, or the logarithm.

The phrase "holomorphic at a point z0" means 
not just differentiable at z0, but differentiable 
everywhere within some neighborhood of z0. 

The existence of a complex derivative in a 
neighborhood is a very strong condition, for it 
implies that any holomorphic function is 
actually infinitely differentiable and equal to 
its own Taylor series.
.

A one-dimensional complex manifold. 
can be thought of as "deformed versions" of 
the complex plane: locally near every point 
they look like patches of the complex plane, 
but the global topology can be quite different. 
For example, they can look like a sphere or a 
torus or a couple of sheets glued together.
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