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Cauchy's Theorem and Integral

The integral of a complex function is path For any counterclockwise contour C
Independent iff the integral over a closed that encloses z,
contour always vanishes
The integral vanishes if f(z) is flz,) = 1 - ¢ flz) dz
analytic ( ) at the every 2ni 7 (2-2)
point of a closed contour
if f(2) is analytic ( )
everywhere and on C
For the closed curve C and ie if L exists
the interior domain A of C dz

knowingf (z) on C completely

| f(z)dz determinesf (z) everywhere A
C inside the contour.
— boundary integral method
if f(2) is analytic ( )
everywhere and on C
1 ¢ flw)
e, if %exists flz) = 2751'45 W—Zdw
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Domain and Region

A connected set S

Any two of its points can be joined by a broken line
of finitely many straight-line segments
all of whose points belong to S

An open connected set S : a domain

An open connected set S +
some or all of its boundary points : a region
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Simply and Multiply Connected

A simply connected domain D

If every simple closed contour C lying entirely in D
can be shrunk to a point without leaving D

Every simple closed contour C lying entirely in D
encloses only points of D

No holesin D

Simply Connected Doubly Connected Triply Connected

< 06D Sap
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Simple Closed Path

A simple closed path

A closed path that does not intersect or touch itself

Closed Paths

simple closed path Mlosed path Mlosed path

Intersect
8 touch
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Domains and Regions

Doubly Connected Doubly Connected Doubly Connected
Domain D, Domain D, Domain D .
D
D2 3
D
........ 1
c C
Simple Closed Path C Simple Closed Path C

Can convert into
Simply Connected Simply Connected Simply Connected

Regions R_or R &R, Region R_ RegionsR &R,

|
N A

2 cuts
Boundary included 1 cut
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Contour Integrals

f(z) :defined at points a smooth curve C is defined by
of a smooth curve C _
{X_X&) a<t<b
y=y(t)

The contour integral of f along C

| f(z)dz = [(u+iv)(dx+ idy) = [udx—vdy + i[vdx+ udy
= [[ux'(t)-vy'(t)ldt + i![vx'(t)+uL(t)]dt
= J(u+iv)(x'(t)+iy'(t))dt
“ z(t) = x(t) +iy(t)
b z'(t)=x"(t)+iy'(t)
gf(z)dz = {f(z(t))z'(t)dt d<t=<h
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Antiderivative

f(z) :continuous
in a domain D é F (z): antiderivative of f(z)

f(z) = F'(z) foreveryz
in a domain D

F (z) : antiderivative of f(z) for every z in a domain D

‘ F(z) has a derivative at every zin a domain D : f(2)

- F(z) analytic at every z in a domain D Differentiability

implies continuity

‘ F(z) continuous at every z in a domain D
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Fundamental Theorem (1)

Fundamental Theorem of Calculus

| f(x)dx = F(b) - Fl(a)

Fundamental Theorem for Contour Integrals

f(z) :continuous in a domain D

F(z) :antiderivative of f(2) iF'(z) = f(z) for every z in a domain D}

- ff(Z) dz = F(z,)— F(z,) for any contour C in D

with an initial point z_ and a terminal point z, (any point z, z in D)
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Fundamental Theorem (2)

f(z) :continuous in a domain D
F(z) :antiderivative of f(z) F'(z)=f(2z) forevery zin a domain D}

‘ ff(z) dz = F(Zz) —F(Zl) for any contour C in D

with an initial point z_ and a terminal point z, (any point z, z in D)

Young Won Lim
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Fundamental Theorem (3)

f(z) :continuous in a domain D
F(z) :antiderivative of f(z) [F'(z) = f(2) ]

‘ ff(2'> dz = F(Zz)—F(Zl> for any contour C in D
C
with an initial point z_ and a terminal point z, (any point z, z in D)

D: multiply connected domain

Ta
' flz2) i< (z,)-F(z,)  forany contour Cin D
we may not call F(z) an antiderivative of f(z) in D
singulari C N
we can still find a contour C such that
C: simple closed path f f(z)dz = F(z,) - F(z,) for a contour C
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Contour Integration Evaluation (1)

(1) Indefinite Integration of Analytic Functions

f(z)=F'(z) antiderivative
| flz)dz = F(z,)- Flz, )

must have no
singularities in D

(2) Integration by the Use of the Path

z=2z(t) (a<t<b) parametric
b
dz = t ‘(t)dt
J flz)dz = [ flzlt)z(0)
must be

continuous on C
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Contour Integration Evaluation

(1) Indefinite Integration of Analytic Functions

f(z) :analytic in a simply connected domain D f(z)=F'(z)

‘ There exists an indefinite integral in D : an analytic function F(2)

‘ ff(Z) dz = F(z,)- Fl(z,) for every path in D

between Z, and Z,

(2) Integration by the Use of the Path

f(z) acontinuous function on a path C
C : a piecewise smooth path represented by z =z(t) (a<t<b)

=) J flz)dz = [ fle(t)) '(t) dt
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Contour Integration Evaluation f(z) = 1/z

(1) Indefinite Integration of Analytic Functions
Z1 =2 =) ff(z)dzzF(Z1)_F(Zo):O

But f(2)== notanalytcat z=0 ™ cannot apply this method

(2) Integration by the Use of the Path

C:theunitcircle = z(t)=cost+ isint=e'" (0<t=<2m)

2'(t)=—sint + icost =ie"

2 . 2n
| flz)dz = f%dt = [idt = 2mi
C 0o € 0
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Contour Integration Evaluation f(z) = z"

(1) Indefinite Integration of Analytic Functions

z,=2y, wm [ flz)dz = F(z,)-F(z,) =0

But f(z)=2" notanalytcat =z=0 for m<0O ™ cannot apply this method

(2) Integration by the Use of the Path
C:theunitcircle = 2z(t)=cost+ isint = e" (0<t<2n)
2'(t)=—sint + icost =ie"

2n 2n

27 27
f flz)dz = fem“ie“ dt = fiei<m+1)t dt =i fcos((m+ 1)t)dt + if sin((m+ 1)t) dt
0 0 0 0
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Contour Integration f(z) = z%, z', 2°, z*, z*, Z°

27 2n -
[ flz)dz = [ e™ie'dt = [ie'™" dt dz =|ie’|dt
(o 0 0
27 ' ' 2n ‘ 1 . 27 1
m=2 [ 2z*dz = [e?tiedt = [ie®"dt = |2e""| = Z(e""-¢e% = 0 3
(& 0 0 3 0 3
27 . . 27 . 1 . 27 1
m=1 [ zdz = [e'ie"dt = [ie? dt = {—em] = —(e*"-e’) = 0 2
() 0 0 2 0 2
27 . 27 . o
m=0 [1dz= [ietdt = [ietdt = |e"],” = (e*"—e°) = 0 1
C 0 0
1 27 ' ' 2n
=1 [ =dz = [eie'dt = [idt = [i];" = i(2n-0) =|2xi 0
C 24 0 0
1 2xn ‘ ‘ 2n . 19
m=2 [ = dz= [e™ie®dt = [ie'tdt =|-e, = —(e*-e° =0 -1
c 2 0 0
1 27 . . 27 - 1 ' 27 1
m=-3 [ —dz = [e™ie'dt = [ie? dt = {——em ~Z(e*-e’) =0 -2
c Z 0 0 2 0 2
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Integration by using an Antiderivative (1)

z=e" (z#0) m) w=lnz  (2x0) drny =1
| dz Z

z=x+iy=e" " =e"(cosv+isinv)=e"cosv + ie"sinv

principal value
> 0 # 0

D: multiply connected domain = [ n z : notanalytic in D
Ta

. L 1 .
== Lnz jisnotan antiderivative of S inD

§— a2 $Ldz=2xi
C

c Z

C

Ln z is not continuous on the negative real axis

==) branch cut
C: simple closed path

F(2) : antiderivative of f(2)
- F(2) has a derivative at every z in adomain D : f(2)

| f(2) d><7(z | Flz) - F(z) analytic at every z in a domain D
- 1 0
° M) F(z) continuous at every z in a domain D

N

N
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Integration by using an Antiderivative (2)

D: a simply connected domain = [ nz :analyticinD

Ta
1
== Lnz isan antiderivative of 5 inD
3i &
W» | flz)dz = Flz,) - F(z,)
5 %o
Ln z is continuous on the C
) . 3i .
C. a simple path f%dz = [Lnz)® = Ln3i- Ln5
5
Lnz = In|z|+iArg(z) — In3+i% —1n5 = 111%”%
F(2) : antiderivative of f(2)
- F(z) has a derivative at every z in a domain D : f(2)
M) F(z) analyticateveryzinadomain D
- F(z) continuous at every z in a domain D
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Independence of the Path

VAN : : :
Independence of the path — Z,, Z,:points inadomain D

for all contours C in D
with an initial point z_ and a terminal point z,

f f(z)dz The value of its contour integral is the same

C
D %2 D <4

C2 ” C2
2'O 2'O
S ¢ S -c1
$ f(z)dz = ¢ f(z)dz ¢ flz)dz+$f(z)dz = 0
C1 c2 -Cl1 c2
i Y Won Li
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Analyticity — Path Independence

f(z) :analytic in a simply connected domain D

- | f(z)dz : independent of the path
C
analytic ®®  antiderivative J— D
C
™  [f(z)dz = F(z,)- F(z,)
C
‘ 22221 p J.f(z> dz =0 2-' _1—"222
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Antiderivative and Path Independence

f(z) :continuous in a domain D
F(z) :antiderivative of f(z)  F'(z)= f(z) forevery zin a domain D

For any contour C in D with an initial point z_ and a terminal point z

‘ gf(z) dz = F(z,) - F(z,)

f(z) :continuous in a domain D

F(z) :antiderivative of f(z)  F'(z)=f(z) foreveryzinadomain D

” ff(z) dz . independent of the path
C

Complex Integration (2A) 22 Young Won Lim



Principle of Deformation of Path

Impose a continuous deformation of the path of an integral

As long as deforming path always contains only points
at which f(z) is analytic, the integral retains the same value

__________________
~~~~~~

-
-
-
- -
- -
T rrmmm="

________
- S -
. ~

_ continuous ¢ m<0 not necessarily zero
», deformation : | Z;

" impossible ! 45(2 —z,)" d2><0
i i $(z -2z, "' dz = 2mi

~
S

.
- -
...........

no anti-derivative in

~

-
~ .
------------
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Analyticity — Path Independence

$ flz)dz = 0 ¢ f(z)dz= ¢ flz)dz =0
—C1+C2 —-C1+T+C2-T -C1+C2
Deformation of Contours simply connected range doubly connected domain

-------
........
Y

~

C3

____________
oz .
.
' 1
1
L}
1
; C
.
A
A
.
.
-
~
~~ Cl
- 0
................
A
‘
AY
]
’

mply connected domain

gif(Z) dz = if(z) dz Eﬁf(z)dz _ fﬁf(z) dz = Sﬁf(Z)dZ
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Cauchy's Integral Theorem (1)

f(z) :analyticin a simply connected domain D

f'(z) :continuous in a simply connected domain D

‘ for every simple closed contour C in D Sﬁ f(2> dz =0

| f(z)dz = [(u+iv)(dx+idy) = [udx-vdy + i[vdx+udy

C C

Green's Theorem ov  ou

ox 0V

ou dv
oxX 0V

dA =0

dA + lﬂ

D

line integration vs - f
. . D
double integration

Cauchy-Riemann Eq ou _ _ov ou _ ov
A necessary condition for oy 0 X 0 X oy
analyticity
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Cauchy's Integral Theorem (2)

f(z) :analyticin a simply connected domain D

f'(z) :continuous in a simply connected domain D

‘ for every simple” closed contour C in D Sﬁ f(2'> dz =0

$f(z)dz = 0

$f(z)dz = 0

- Also for any closed contour
if(z)dz:o $ flz)dz = 0
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Cauchy-Goursat Theorem (1)

Cauchy-Goursat Theorem

f(z) :analytic in a simply connected domain D

‘ for every simple closed contour C in D gﬁ f(z)dz = 0

Cauchy Theorem
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Cauchy-Goursat Theorem (2)

f(z) :analytic in a simply connected domain D

- for every simple closed contour CinD 93 f(z) dz = 0

____________
-----
- -~
- S -
~
~

" simple closed curve Cl -
- D
a continuously turning tangent 1

except possibly at a finite number of points

', c2
. allow a finite number of corners (not smooth) ACC%

R
~ -
---------
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Cauchy-Goursat Theorem (3)

f(z) :analytic in a multiply connected domain D

- for every simple closed contour C in D S’S f(z)dz=_0

* not necessarily zero C

doubly connected domain D m} simply connected region R' contour C & C1

C D

43 f(z)dz + gﬁ f(z)dz =0 gﬁ flz)dz = gﬁ f(z)dz

ccw C cw Cl1 ccw C ccw Cl1
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Cauchy-Goursat Theorem (4)

triply connected domain p m simply connected region R'  contour C, C1, C2

C D c
ccfcf(Z) dz + gsf(Z) dz =
SBCIf(Z)dz - ¢
"$ flz)dz = 0 §rie)dz + §1lz)dz
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Integration of f(z) = 1/z

2n .t 27
[ flz)dz = [ dt = [idt = 2ni ce(C1, C2, C3, C4, C5, C6)
c o € 0
A A A
c1 C2 C3

!
N—

C4 C5S C6

() /]
-
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Contour Integration for f(z)/(z-z )

f(z) |analyticinD £2) | ot analytic at z_in D
(Z_Zo) e
D: simply connected domain D': multiply connected domain
A Ta
C
‘ gﬁf(z) dz =0 45 flz) dz S 0 not necessarily
c C (Z—Zo) zero
f(z,)
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Simply Connected Region R

(5—(22)) not analyticatz in D (5_(22)) analytic at z_in a region R
D' Olt. I ted d . “— R: all points within and on C
: multiply connected domain
. C: any simple closed path
¢ f(z) dz > 0 not necessarily 45 f(z) dz =’ () not necessarily
C (Z_ZO) Zero C Z_Z Zero
dz = 2ni|f(z
?:5 (z— Zo wilf(2o)
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The Function Value f(z )

f(z)

(2-2,)

not analyticatz in D

analytic at z_in a reginon R

_ _ R: all points within and on C
D': multiply connected domain

“— C: any simple closed path

C

The value of an analytic function f 1 f(z)
at any point z_ in a simply connected domain fl(z,) = o gﬁ dz

can be represented by a contour integral
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Contour Integration in R
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As z approaches to a

i

alongC' 2z — a = pe z>a ™ p->0, f(z)-> f(a)

QQOOO

C
Q z =a - pe”

dz = ipe'’do
dz _ ipe’do
Z—d M
Ccfcf(zz_)gz = 2ff(z)ide - B
f(a)
flz)dz f(z)dz ,
CC\?C Z—d _$ Z—d — 231:1 f(a)
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Other Contour Integration in R

dz ipedo C

(z—aP  (pe? v alongC' z — a = pe"”
27 . Z = 4a — peie
§ f(z)z dz— J' f<z.)ld9 \
ccwC(Z_a) 0 pele * dZ = ipeiedG
- _ffg)z)lemde _ [_f(pz)e—ie zn R
Pl
N
— _f(pz)(e—12n e—iO) -0
dz = ipe®do (z—a)dz = pe’ipe®do
§ [f(z)dz = [ fl2)ipetde § Z2QF(2) dz = [ F(2)ilpe")2do
= [f(z)peie(z)“ _ fnf(z)pzieizedﬂ — [f(z)%eizern
— f(z)p(e—iZI:_e—iO) -0 — f(z)%(e—iéln e‘io) -0
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Cauchy's Integral Formula |

f (Z) > analytic on and inside simple close curve C

‘ fla) = 1 fﬁ ];(_Zczdz the value of (2

271 atapoint z=qa insideC

m =6 [ Waw

W—Z2

if f'(z) exists ) f(z) can be expanded
in the neighborhood of a point a in a Taylor series about a
that converges inside a disk
- f(z) is infinitely differentiable whose radius is equal to the distance
in that neighborhood between a and the nearest
of f(z)
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Cauchy's Integral Formula |

f (Z) > analytic on and inside simple close curve C

f(w the value of f(2)
‘ - 271:145 '

atapoint z=a inside C

d f(w (o) — 1 fw
d—zf(z B dz 27c195 dW] fiiz) Sﬁ (w— z) fiw
d f(w v _ 2 f(w)
d—zf(z B dz ngﬁ dw] friz) Sﬁ w—z)? aw
d f(w _ f w)
d—zf(z B dz 2n1¢ ] fe 275143

(n) _ f ) m) f(z) is infinitely differentiable
f (X - 27” ?j W Z)n+1 dw in that neighborhood
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Cauchy's Integral Formula | & I

f (Z) > analytic on and inside simple close curve C

the value of
m 0=t § 0%, wieolf(z)
2nl . Z—a at a point z =a inside C
‘ f( Z) — 1 § f <W)dW q f(z) is infinitely differentiable
21l wW—2 in that neighborhood

‘ f?(a) = L'Sﬁ f(Z)’)Hle

)= f<””)l+1dw

C (W—Z

Complex Integration (2A) 40 Young Won Lim
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Complex Analytic Functions

f(z) is f(z) is differentiable
Analytic h in a neighborhood of z
(Holomorphic) (if df7dz exists)

ou_ov  du__0dv
oxX 0V oy 0 X

Cauchy'_s f(z) is differentiable then f(z) can be

Integration in a neighborhood of z represented by a

Formulal (if df/dz exists) contour integral

Cauchy's then f(z) is

Integration infinitely differentiable

Formula in that neighborhood.

General'ized f(z) can be expanded in

Cauchy's a Taylor series

Formula

i Young Won Lim
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Complex Analytic Functions

f(z) is
Analytic
(Holomorphic)

)/

N g —

/‘\Zo

Cauchy's
Theorem

[ f(z)dz = 0

Complex Integration (2A) 42

f(z) is differentiable

in a neighborhood of z ﬁ ou = ov 6_u = _8_V

(if df/dz exists) ox 0Yy oy 0 X
fliz) | D c f(z)

(Z_Zo)
Y N

Cauchy's Integration Cauchy's Integration
Formula | Formula ll

Flz) = 2§ LZlaz  fig) = g T2 g,

2ni? z-z, 2mi ¢ (z—z,)™!
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