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Cauchy's Theorem and Integral

f (z0) =
1
2π i

∮
C

f (z)

(z−z0)
dz

∫
C

f (z ) dz

The integral of a complex function is path 
independent iff the integral over a closed 
contour always vanishes

For the closed curve C and
the interior domain A of C

The integral vanishes if         is
analytic (differentiable) at the every 
interior point of a closed contour

f (z )

if         is analytic (differentiable)
everywhere inside and on C

d f
d z

f (z )

i.e, if         exists

For any counterclockwise contour C
that encloses z0

if         is analytic (differentiable)
everywhere inside and on C

d f
dz

f (z )

i.e, if         exists

knowing        on C completely
determines        everywhere A
inside the contour. 
–  boundary integral method 

f (z) =
1
2π i∮

f (w)

w−z
dw

f (z )

f (z )
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Domain and Region

A connected set S   

Any two of its points can be joined by a broken line
of finitely many straight-line segments 
all of whose points belong to S 

An open connected set S   :  a domain

An open connected set S  +
 some or all of its boundary points :  a region
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Simply and Multiply Connected

A simply connected domain D   

If every simple closed contour C lying entirely in D
can be shrunk to a point without leaving D

Every simple closed contour C lying entirely in D
encloses only points of D

No holes in D 

Simply Connected Doubly Connected Triply Connected
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Simple Closed Path

Closed Paths

simple closed path

A simple closed path

A closed path that does not intersect or touch itself

simple closed path simple closed path

intersect

touch
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Domains and Regions

Doubly Connected
Domain D

1

Doubly Connected
Domain D

2

Doubly Connected
Domain D

3

D
1

D
2

D
3

Simple Closed Path CSimple Closed Path C

C C

2 cuts

Simply Connected
Regions R

a
 & R

b

R
a

R
b

Simply Connected
Region R

c
 

R
c

1 cut

Can convert into  
Simply Connected
Regions  R

c
  or  R

a
 & R

b
  

R

Boundary included
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Contour Integrals

x = x (t )
f (z) : defined at points 

  of a smooth curve C
a smooth curve C is defined by

y = y (t )
a≤ t ≤ b

= ∫
C

(u + iv)(dx + idy ) = ∫
C

udx − v dy + i∫
C

v dx + udy

= ∫
a

b

[u x' (t)− v y '(t)]dt + i∫
C

[v x '(t) + u y '(t)]dt

z (t) = x (t ) + i y (t)

a≤ t ≤ b∫
C

f (z) dz = ∫
a

b

f (z (t))z '(t)dt

= ∫
a

b

(u + iv )(x '(t) + i y '(t))dt

z '(t ) = x '(t ) + i y '(t )

∫
C

f (z ) dz

The contour integral of f along C
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Antiderivative 

: continuous 
  in a domain D

f (z )

f (z) = F '(z)

F (z)

for every z
in a domain D

: antiderivative ofF (z)

has a derivative at every z in a domain D : 

analytic at every z in a domain D
Differentiability 
implies continuity

f (z )

f (z)

f (z )

F (z)

continuous at every z in a domain DF (z)

F (z)

: antiderivative of

for every z in a domain D



Complex Integration (2A) 10 Young Won Lim
2/24/14

Fundamental Theorem (1)

: continuous in a domain Df (z )

: antiderivative of F ' (z) = f (z)F (z) for every z in a domain D

with an initial point z
1
 and a terminal point z

2
  (any point  z

1
, z

2 
in D)

∫
C

f (z) dz = F (z2) − F (z1)

Fundamental Theorem for Contour Integrals

f (z )

Fundamental Theorem of Calculus

∫
a

b

f (x) dx = F (b) − F (a)

for any contour C in D 
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Fundamental Theorem (2) 

∫
C

f (z ) dz = ∫
a

b

f (z (t))z '(t ) dt

= ∫
a

b

F '(z (t))z '(t) dt

= F (z2) − F (z1)

= F (z (b)) − F (z (a))

= ∫
a

b
d
dt

F (z (t)) dt

: continuous in a domain Df (z )

: antiderivative of F ' (z) = f (z)F (z) for every z in a domain D

with an initial point z
1
 and a terminal point z

2
  (any point  z

1
, z

2 
in D)

∫
C

f (z) dz = F (z2) − F (z1)

f (z )

for any contour C in D 
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Fundamental Theorem (3) 

: continuous in a domain Df (z )

: antiderivative of F '(z) = f (z)F (z)

with an initial point z
1
 and a terminal point z

2
  (any point  z

1
, z

2 
in D)

∫
C

f (z) dz = F (z2) − F (z1)

f (z)

for any contour C in D 

D: multiply connected domain

C: simple closed path

we may not call F(z) an antiderivative of f(z) in D

C

∫
z0

z1

f (z) dz = F (z1) − F (z0)

we can still find a contour C such that 

∫
z0

z1

f (z) dz = F (z1) − F (z0)

for any contour C in D 

for a contour C 

singular
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Contour Integration Evaluation (1)

∫
z0

z1

f (z) dz = F (z1) − F (z0)

f (z) = F '(z)

(1) Indefinite Integration of Analytic Functions

∫
C

f (z) dz = ∫
a

b

f [z (t )] z '(t ) dt

(2) Integration by the Use of the Path

z = z (t ) (a≤ t ≤ b)

antiderivative

parametric

must have no 
singularities in D

must be 
continuous on C
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Contour Integration Evaluation 

f (z ) : analytic in a simply connected domain D

for every path in D

F (z)There exists an indefinite integral in D

∫
z0

z1

f (z) dz = F (z1) − F (z0)

: an analytic function 

f (z) = F '(z)

(1) Indefinite Integration of Analytic Functions

C : a piecewise smooth path

∫
C

f (z) dz = ∫
a

b

f [z (t )] z '(t ) dt

(2) Integration by the Use of the Path

represented by z = z (t) (a ≤ t ≤ b)

f (z ) a continuous function on a path C

 between z
0
  and z

1
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Contour Integration Evaluation   f(z) = 1/z 

(1) Indefinite Integration of Analytic Functions

C : the unit circle

∫
C

f (z ) dz = ∫
0

2π
ieit

eit
dt = ∫

0

2π

i dt = 2π i

(2) Integration by the Use of the Path

not analytic at 

z (t ) = cost + isin t = ei t (0≤ t ≤ 2π)

∫
z0

z1

f (z ) dz = F (z1) − F (z0) = 0z1 = z0

f (z ) =
1
z

∫
z0

z1

f (z ) dz = F (z1) − F (z0) = 0

z = 0But cannot apply this method

z '(t) =−sint + icost = i eit



Complex Integration (2A) 16 Young Won Lim
2/24/14

Contour Integration Evaluation  f(z) = zm
 

(1) Indefinite Integration of Analytic Functions

C : the unit circle

∫
C

f (z ) dz = ∫
0

2π

emit i eit dt = ∫
0

2π

iei(m+ 1)t dt

(2) Integration by the Use of the Path

not analytic at 

z (t ) = cost + isin t = ei t (0≤ t ≤ 2π)

∫
z0

z1

f (z ) dz = F (z1) − F (z0) = 0z1 = z0

f (z ) = zm z = 0But cannot apply this method

z '(t) =−sint + icost = i eit

= i [∫
0

2π

cos((m+ 1)t ) dt + i∫
0

2π

sin((m+ 1)t ) dt]

m < 0for

∫
C

zm dz =

2π i

0

(m=−1)

(m≠−1)
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Contour Integration f(z) = z2,  z1,  z0,  z-1,  z-2,  z-3

∫
C

f (z) dz = ∫
0

2π

emit ieit dt = ∫
0

2π

iei(m+1)t dt dz = ieit dt

m=2

m=1

m=0

m=-1

m=-2

m=-3

∫
C

z2 dz = ∫
0

2π

ei2 t ieit dt = ∫
0

2π

i ei3 t dt = [13 ei3t ]
0

2π

=
1
3

(e6π − e0) = 0

∫
C

z dz = ∫
0

2π

eit ieit dt = ∫
0

2π

iei2 t dt = [12 ei2t ]
0

2π

=
1
2

(e4π−e0) = 0

∫
C

1 dz = ∫
0

2π

ieit dt = ∫
0

2π

i ei t dt = [eit ] 0
2π

= (e2π−e0) = 0

∫
C

1
z
dz = ∫

0

2π

e−it iei t dt = ∫
0

2π

i dt = [i ] 0
2π

= i(2π−0) = 2π i

∫
C

1
z2

dz = ∫
0

2π

e−i2t i eit dt = ∫
0

2π

ie−i t dt = [−e−it ] 0
2π

= −(e−2π−e0) = 0

∫
C

1
z3

dz = ∫
0

2π

e−i3t ieit dt = ∫
0

2π

ie−i2t dt = [−1
2
e−i2t ]

0

2π

= −
1
2

(e−4π−e0) = 0

3

2

1

0

-1

-2
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Integration by using an Antiderivative (1)

z = ew
(z ≠ 0) w = ln z (z ≠0)

z = x + i y = eu + iv
= eu

(cosv+ isinv) = eucosv + i eusinv

≠ 0> 0

D: multiply connected domain

d
dz

Ln z =
1
z

principal value

Ln z : not analytic in D

C: simple closed path

∮
C

1
z
dz = 0 ∮

C

1
z
dz = 2π i

Ln z is not an antiderivative of in D
1
zC

Ln z is not continuous on the negative real axis

branch cut

: antiderivative ofF (z)

has a derivative at every z in a domain D : 

analytic at every z in a domain D

f (z)

f (z)

F (z )

continuous at every z in a domain DF (z )

F (z )

∫
z0

z1

f (z) dz = F (z1) − F (z0)
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Integration by using an Antiderivative (2)

D: a simply connected domain Ln z : analytic in D

C: a simple path

Ln z is an antiderivative of in D
1
zC

Ln z is continuous on the C

∫
z0

z1

f (z) dz = F (z1) − F (z0)

: antiderivative ofF (z)

has a derivative at every z in a domain D : 

analytic at every z in a domain D

f (z)

f (z)

F (z)

continuous at every z in a domain DF (z)

F (z)

5

3i

∫
5

3i
1
z
dz = [Lnz ] 5

3i
= Ln3 i− Ln5

Lnz = ln∣z∣+ i Arg(z ) = ln3 + i π
2

− ln5 = ln 3
5

+ i π
2
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Independence of the Path

z0 , z1 : points  in a domain DIndependence of the path

for all contours C in D 
with an initial point z

0
 and a terminal point z

1

∫
C

f (z) dz

D

C1

∮
−C1

f (z ) d z + ∮
C2

f (z) dz = 0∮
C1

f (z ) dz = ∮
C2

f (z ) dz

The value of its contour integral is the same

C2

D

–C1

C2

z0

z1

z0

z1



Complex Integration (2A) 21 Young Won Lim
2/24/14

Analyticity → Path Independence

: analytic in a simply connected domain Df (z )

: independent of the path∫
C

f (z) dz

analytic antiderivative

∫
C

f (z) dz = F (z2) − F (z1)

∫
C

f (z) dz = 0z2 = z1

C

z1 = z2

D
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Antiderivative and Path Independence

: independent of the path∫
C

f (z) dz

: continuous in a domain Df (z )

: antiderivative of F ' (z) = f (z)F (z) for every z in a domain D

: continuous in a domain Df (z )

: antiderivative of F '(z) = f (z)F (z) for every z in a domain D

For any contour C in D with an initial point z
0
 and a terminal point z

∫
C

f (z) dz = F (z2) − F (z1)

f (z )

f (z)
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Principle of Deformation of Path

D

z1

z2

Impose a continuous deformation of the path of an integral

As long as deforming path always contains only points 
at which f(z) is analytic, the integral retains the same value 

D

z1

z2

D

z1

z2 D

z1

z2

z0

∮(z − z0)
m dz = 0

m≥ 0

∮(z − z0)
m dz = 0

m < 0continuous 
deformation : 
impossible

∮(z − z0)
−1 dz = 2π i

not necessarily zero

no anti-derivative in D
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Analyticity → Path Independence

Deformation of Contours

C1

D
R

D

C1

C2

z0

z1

D

–C1

C2

z0

z1

C2 C2

C1

R

C3 C3

D

doubly connected domain

simply connected domain

simply connected range

∮
−C1+C2

f (z) dz = 0 ∮
−C1+Γ+C2−Γ

f (z) dz = ∮
−C1+C2

f (z) dz = 0

−Γ

Γ

∮
C1

f (z) dz = ∮
C2

f (z) dz

– C1

– C1

∮
C1

f (z ) dz = ∮
C2

f (z) dz = ∮
C3

f (z ) dz



Complex Integration (2A) 25 Young Won Lim
2/24/14

Cauchy's Integral Theorem (1)

f (z ) : analytic in a simply connected domain D

for every simple closed contour C in D

f '(z) : continuous in a simply connected domain D

∮
C

f (z ) dz = 0

∫
C

f (z ) dz = ∫
C

(u+iv)(dx+i dy) = ∫
C

udx−v dy + i∫
C

v dx+udy

= ∬
D

(−∂v
∂ x

−
∂u
∂ y ) d A + i∬

D
(∂u∂x

−
∂v
∂ y ) d A = 0

∂u
∂ x

=
∂v
∂ y

∂u
∂ y

= −
∂v
∂ x

Green's Theorem

Cauchy-Riemann Eq

A necessary condition for 
analyticity

line integration vs
double integration
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Cauchy's Integral Theorem (2)

f (z ) : analytic in a simply connected domain D

for every simple* closed contour C in D

f '(z) : continuous in a simply connected domain D

∮
C

f (z ) dz = 0

D
C1

C2

C3

∮
C1

f (z ) dz = 0

∮
C2

f (z ) dz = 0

∮
C3

f (z ) dz = 0

D CC

∮
CC

f (z) dz = 0

Also for any closed contour
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Cauchy-Goursat Theorem (1)

∮
C

f (z ) dz = 0

: analytic in a simply connected domain D

for every simple closed contour C in D

f (z )

f (z ) : analytic in a simply connected domain D

for every simple closed contour C in D

f '(z ) : continuous in a simply connected domain D

∮
C

f (z ) dz = 0

Cauchy-Goursat Theorem

Cauchy Theorem
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Cauchy-Goursat Theorem (2)

∮
C

f (z ) dz = 0

: analytic in a simply connected domain D

simple closed curve 

a continuously turning tangent

except possibly at a finite number of points

allow a finite number of corners  (not smooth)

for every simple closed contour C in D

: continuous in a simply connected domain D

f (z )

f '(z)

D
C1

C2
C3
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Cauchy-Goursat Theorem (3)

∮
C

f (z ) dz = 0

: analytic in a multiply connected domain D

for every simple closed contour C in D

f (z)

∮
ccw C

f (z) dz + ∮
cw C1

f (z) dz = 0 ∮
ccw C

f (z) dz = ∮
ccw C1

f (z) dz

doubly connected domain

C

C1C1

CC

C1

D

simply connected region

R'

D

R'

R'

cut

* not necessarily zero

contour C & C1 
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Cauchy-Goursat Theorem (4)

triply connected domain

CCC

C2

D

simply connected region

R'

D

R'

R'

C1

∮
ccw C

f (z ) dz +

∮
cwC1

f (z ) dz +

∮
cwC2

f (z ) dz = 0

∮
C

f (z) dz =

∮
C1

f (z) dz + ∮
C2

f (z ) dz

C2

C1

cuts

C

R'

contour C, C1, C2 
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Integration of f(z) = 1/z

C1

z0

C2

z0

C3

z0

C4

z0

C5

z0

C6

z0

∫
C

f (z ) dz = ∫
0

2π
ieit

eit
dt = ∫

0

2π

i dt = 2π i C ∈ {C1, C2, C3 , C4, C5 , C6}
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Contour Integration for f(z)/(z-z
0
)    

D C

z0

f (z )

D: simply connected domain D': multiply connected domain

analytic in D f (z )

(z−z0)
not analytic at z

0
 in D

z0

∮
C

f (z) dz = 0

C

∮
C

f (z)

(z−z0)
dz = 0 not necessarily 

zero

f (z0)
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Simply Connected Region R

f (z )

(z−z0)
analytic at z

0
 in a region R

∮
C

f (z)

(z−z0)
dz = 0 not necessarily 

zero

∮
C

f (z)

(z−z0)
dz = 2π i f (z0)

C

D': multiply connected domain

f (z )

(z−z0)
not analytic at z

0
 in D

z0

∮
C

f (z)

(z−z0)
dz = 0 not necessarily 

zero

R z0

C

R: all points within and on C

C: any simple closed path
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The Function Value f(z
0
)

f (z )

(z−z0)
analytic at z

0
 in a reginon R

C

D': multiply connected domain

f (z )

(z−z0)
not analytic at z

0
 in D

z0
R z0

C

R: all points within and on C

C: any simple closed path

f (z0) =
1
2π i ∮C

f (z)

(z−z0)
dz

The value of an analytic function f
at any point z

0
  in a simply connected domain 

can be represented by a contour integral
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Contour Integration in R 

∮
C

f (z) dz = 0 ∮
ccw C

f (z )

z−a
dz + ∮

cw C'

f (z)

z−a
dz = 0

a

C

a

C

C'

∮
ccw C

f (z)

z−a
dz = ∮

ccw C'

f (z )

z−a
dz
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As z approaches to a 

a

CC

z − a = ρeiθalong C'

z = a − ρeiθ

dz = iρeiθdθ

dz
z−a

=
iρeiθdθ

ρeiθ

∮
ccw C

f (z) dz
z−a

= ∫
0

2π

f (z)idθ = 2π i f (a)

z→a ρ→0 , f (z ) → f (a)

z→a
C''C'

f (a)

∮
ccw C

f (z) dz
z−a

= ∮
ccw C'

f (z) dz
z−a = 2π i f (a)

a
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Other Contour Integration in R

z − a = ρeiθalong C'

z = a − ρeiθ

dz = iρei θdθ

dz
(z−a)2

=
iρeiθdθ

(ρeiθ)2

∮
ccw C

f (z )

(z−a)2
dz= ∫

0

2π
f (z )i

ρeiθ
dθ

= ∫
0

2π
f (z )
ρ ie−iθdθ = [− f (z )

ρ e−iθ]0
2π

= −
f (z)
ρ (e−i2π − e−i0) = 0

dz = iρeiθdθ

∮
ccw C

f (z) dz = ∫
0

2π

f (z)iρeiθdθ

= [ f (z )ρeiθ ]0
2π

= f (z)ρ(e−i2π − e−i0) = 0

(z−a) dz = ρeiθ iρeiθdθ

∮
ccw C

(z−a) f (z) dz = ∫
0

2π

f (z)i (ρeiθ)2dθ

= f (z)
ρ

2
(e−i4π − e−i0) = 0

= [ f (z )
ρ

2
ei2θ]0

2π

= ∫
0

2π

f (z)ρ2iei2θdθ

a

C



Complex Integration (2A) 38 Young Won Lim
2/24/14

Cauchy's Integral Formula I

f (a) =
1
2π i

∮
f (z)

z−a
d z

f (z) : analytic on and inside simple close curve C

the value of 

at a point 

f (z)

z = a inside C

f (z) =
1
2π i

∮
f (w)

w−z
dw

if            exists 
in the neighborhood of a point    

f '(z )

a

               is infinitely differentiable 
in that neighborhood
f (z )

              can be expanded 
in a Taylor series about     
that converges inside a disk 
whose radius is equal to the distance 
between      and the nearest singularity 
of   

f (z )

a

a
f (z )
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Cauchy's Integral Formula II

f (z) : analytic on and inside simple close curve C

the value of 

at a point 

f (z)

z = a inside C
f (z) =

1
2π i∮

f (w)

w−z
dw

d
dz

f (z ) =
d
dz { 1

2π i
∮

f (w)

w−z
dw}

d
dz

f (z ) =
d
dz { 1

2 π i
∮

f (w)

w−z
dw}

d
dz

f (z ) =
d
dz { 1

2π i
∮

f (w)

w−z
dw}

f (n)
(x) =

n!

2π i ∮C
f (w)

(w−z)
n+ 1 dw

f '(z ) =
1
2π i

∮
f (w)

(w−z)2
dw

f ''(z) =
2
2π i

∮
f (w)

(w−z)3
dw

f (3)(z) =
3!

2π i
∮

f (w)

(w−z )4
dw

               is infinitely differentiable 
in that neighborhood
f (z )
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Cauchy's Integral Formula I & II

f (a) =
1
2π i ∮C

f (z)

z−a
d z

f (z) : analytic on and inside simple close curve C

the value of 

at a point 

f (z )

z = a inside C

f (n)
(a) =

n!

2π i ∮C
f (z )

(z−a)
n+ 1 d z

f (n)
(z) =

n!

2π i ∮C
f (w)

(w−z )
n+ 1 dw

f (z) =
1
2π i∮

f (w)

w−z
dw                is infinitely differentiable 

in that neighborhood
f (z )
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Complex Analytic Functions

∂u
∂ x

=
∂v
∂ y

∂u
∂ y

=−
∂v
∂ x

f(z) is differentiable
in a neighborhood of z
(if df/dz exists) 

f(z) is 
Analytic 
(Holomorphic)
 

then f(z) is 
infinitely differentiable
in that neighborhood.

Cauchy's
Integration 
Formula II

f(z) can be expanded in 
a Taylor series

Generalized 
Cauchy's 
Formula

f(z) is differentiable
in a neighborhood of z
(if df/dz exists) 

then f(z) can be 
represented by a 
contour integral

Cauchy's 
Integration 
Formula I
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Complex Analytic Functions

∂u
∂ x

=
∂v
∂ y

∂u
∂ y

=−
∂v
∂x

f(z) is differentiable
in a neighborhood of z
(if df/dz exists) 

f(z) is 
Analytic 
(Holomorphic)
 

D

z0

D C
f (z )

(z−z0)

R z0

f (z )

Cauchy's
Theorem

Cauchy's Integration 
Formula I

Cauchy's Integration 
Formula II

∫
C

f (z) dz = 0 f (z0) =
1
2π i

∮
f (z)

z−z0

dz f (n)(z0) =
n!

2π i
∮
C

f (z)

(z−z0)
n+1

dz
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