
Young Won Lim
11/25/16

File (1A)

Young Won Lim
11/25/16

 Copyright (c) 2010-2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

File Pointer 3 Young Won Lim
11/25/16

FILE Pointer and Functions

FILE *fp;

fopen opens a file
fprintf prints formatted wide character to a file stream
fscanf read formatted input from a file stream
fclose closes a file

https://en.wikipedia.org/wiki/C_file_input/output

File Pointer 4 Young Won Lim
11/25/16

Text and Binary File

Formatted Input / Output (Text Mode)
int fprintf (FILE *stream, const char *format, ...);
int fscanf (FILE *stream, const char *format, ...);

Unformatted Input / Output (Text Mode)
int fputc (int c, FILE *stream);
int fgetc (FILE *stream);

Binary Stream Input / Output (Binary Mode)
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

https://en.wikipedia.org/wiki/C_file_input/output

File Pointer 5 Young Won Lim
11/25/16

Formatted Input / Output (Text Mode)

 int scanf (const char *format, ...);
 int fscanf (FILE *stream, const char *format, ...);
int sscanf (const char *buffer, const char *format, ...);

 int printf (const char *format, ...);
int fprintf (FILE *stream, const char *format, ...);
int sprintf (char *buffer, const char *format, ...);

https://en.wikipedia.org/wiki/C_file_input/output

File Pointer 6 Young Won Lim
11/25/16

Unformatted Input / Output (Text Mode)

 int fgetc (FILE *stream);
 char *fgets (char *s, int size, FILE *stream);
 int getc (FILE *stream);
 int getchar (void);
 char *gets (char *s);
 int ungetc (int c, FILE *stream);

 int fputc (int c, FILE *stream);
 int fputs (const char *s, FILE *stream);
 int putc (int c, FILE *stream);
 int putchar (int c);
 int puts (const char *s);

https://en.wikipedia.org/wiki/C_file_input/output

File Pointer 7 Young Won Lim
11/25/16

Direct Input / Output

size_t fread (void *buffer, // where the read objects are stored
size_t size, // size of each object in bytes
size_t count, // the number of the objects
FILE *stream); // the stream to read

size_t fwrite (const void *buffer, // where the objects are written
size_t size, // size of each object in bytes
size_t count, // the number of the objects
FILE *stream); // the stream to read

https://en.wikipedia.org/wiki/C_file_input/output

File Pointer 8 Young Won Lim
11/25/16

fopen()

FILE *fopen(const char *path, const char *mode);

opens a file and associates a stream with it

The file name is the string pointed to by path

mode points to a string consists of the following characters

Returns a FILE pointer (successful)

Returns NULL pointer and set errno (unsuccessful)

https://en.wikipedia.org/wiki/C_file_input/output

File Pointer 9 Young Won Lim
11/25/16

Mode

r for reading fpos_t : beginning

r+ for reading and writing fpos_t : beginning

w for writing fpos_t : beginning

w+ for reading and writing fpos_t : beginning

a for appending fpos_t : end

a+ for reading and appending fpos_t : end(append), begining(read)

https://en.wikipedia.org/wiki/C_file_input/output

File Pointer 10 Young Won Lim
11/25/16

File Positioning

long ftell(FILE *stream);

returns the current file position indicator

int fgetpos(FILE *stream, fpos_t *pos);

gets the file position indicator

int fseek(FILE *stream, long offset, int whence);

moves the file position indicator to a specific location in a file

int fsetpos(FILE *stream, const fpos_t *pos);

moves the file position indicator to a specific location in a file

void rewind(FILE *stream);

removes the file position indicator to the beginning in a file

https://en.wikipedia.org/wiki/C_file_input/output

File Pointer 11 Young Won Lim
11/25/16

Error Handling

void clearerr(FILE *stream);

clears the end-of-file and error indicators

int feof(FILE *stream);

tests the end-of-file indicator

returning nonzero if it is set.

int ferror(FILE *stream);

tests the end-of-file indicator

returning nonzero if it is set.

https://en.wikipedia.org/wiki/C_file_input/output

File Pointer 12 Young Won Lim
11/25/16

FILE Structure

FILE :

● known as a file handle
● an opaque type
● containing the information about a file or text stream

needed to perform input or output operations on it,

an opaque pointer is a special case of an opaque data
type, a datatype declared to be a pointer to a record or
data structure of some unspecified type.

https://en.wikipedia.org/wiki/C_file_input/output

File Pointer 13 Young Won Lim
11/25/16

FILE Structure

containing the information about a file or text stream

● platform-specific identifier of the associated I/O device,

such as a file descriptor
● the buffer
● stream orientation indicator (unset, narrow, or wide)
● stream buffering state indicator (unbuffered, line buffered, fully

buffered)
● I/O mode indicator (input stream, output stream, or update

stream)
● binary/text mode indicator
● end-of-file indicator
● error indicator
● the current stream position and
● multibyte conversion state (an object of type fpos_t)
● reentrant lock (required as of C11)

https://en.wikipedia.org/wiki/C_file_input/output

File Pointer 14 Young Won Lim
11/25/16

FILE Structure

fpos_t –
a non-array type
capable of uniquely identifying the position of every byte in a file and
every conversion state that can occur in all supported multibyte character
encodings

size_t –
an unsigned integer type
which is the type of the result of the sizeof operator.

https://en.wikipedia.org/wiki/C_file_input/output

Young Won Lim
11/25/16

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

