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Pre- and Post- Increment / Decrement

Access 
First x = a ++;

x = a −−;

x = a ++;

x = a −−;

Update 
Next

Access 
Next

x = ++ a ;

x = −− a ;

x = a ++;

x = a −−;

Update 
First

x = a ++;

x = a −−;

x = ++ a ;

x = −− a ;
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Pre- and Post- Increment / Decrement

 a ++;

 a −−;

int a = 3;

 a = a + 1;

 a = a – 1;

 b ++;

 b −−;

double b = 3.1;

 b = b + 1;

 b = b – 1;

 a ++;

 a −−;

cont int a = 3;

 b ++;

 b −−;

const double b = 3.1;
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Pointers with ++ and −− (1)

Access 
First

Update 
Next

Access 
Next

Update 
First

x = * (p ++);

x = * (p −−);

x = * (p ++);

x = * (p −−);

x = * (p ++);

x = * (p −−);

x = *p++;

x = *p−−;

x = * (++ p);

x = * (−− p);

x = *++p;

x = *−−p;

x = * (++ p);

x = * (−− p);

x = * (++ p);

x = * (−− p);
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Pointers with ++ and −− (2)

Access 
First

Update 
Next

Access 
Next

Update 
First

x = (* p) ++;

x = (* p) −−;

x = (* p) ++;

x = (* p) −−;

x = (* p) ++;

x = (* p) −−;

x = ++ (* p);

x = −− (* p);

x = ++*p;

x = −−*p;

x = ++ (* p);

x = −− (* p);

x = ++ (* p);

x = −− (* p);
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Pre and Post Increment / Decrement

v = *p++;

    v = *p (access first)
    p = p+1 (increment later) (pointer increment)

v = (*p)++;

    v = *p (access first)
    *p = *p+1 (increment later) (value increment)

v = *++p;

    p = p+1 (increment first) (pointer increment)
    v = *p (access later)

v = ++*p;

    *p = *p+1 (increment first) (value increment)
    v = *p (access later)
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