
Young Won Lim
12/19/16

Operators (1A)

Young Won Lim
12/19/16

 Copyright (c) 2010-2013 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Operators 3 Young Won Lim
12/19/16

Pre- and Post- Increment / Decrement

Access
First x = a ++;

x = a −−;

x = a ++;

x = a −−;

Update
Next

Access
Next

x = ++ a ;

x = −− a ;

x = a ++;

x = a −−;

Update
First

x = a ++;

x = a −−;

x = ++ a ;

x = −− a ;

Operators 4 Young Won Lim
12/19/16

Pre- and Post- Increment / Decrement

 a ++;

 a −−;

int a = 3;

 a = a + 1;

 a = a – 1;

 b ++;

 b −−;

double b = 3.1;

 b = b + 1;

 b = b – 1;

 a ++;

 a −−;

cont int a = 3;

 b ++;

 b −−;

const double b = 3.1;

Operators 5 Young Won Lim
12/19/16

Pointers with ++ and −− (1)

Access
First

Update
Next

Access
Next

Update
First

x = * (p ++);

x = * (p −−);

x = * (p ++);

x = * (p −−);

x = * (p ++);

x = * (p −−);

x = *p++;

x = *p−−;

x = * (++ p);

x = * (−− p);

x = *++p;

x = *−−p;

x = * (++ p);

x = * (−− p);

x = * (++ p);

x = * (−− p);

Operators 6 Young Won Lim
12/19/16

Pointers with ++ and −− (2)

Access
First

Update
Next

Access
Next

Update
First

x = (* p) ++;

x = (* p) −−;

x = (* p) ++;

x = (* p) −−;

x = (* p) ++;

x = (* p) −−;

x = ++ (* p);

x = −− (* p);

x = ++*p;

x = −−*p;

x = ++ (* p);

x = −− (* p);

x = ++ (* p);

x = −− (* p);

Operators 7 Young Won Lim
12/19/16

Pre and Post Increment / Decrement

v = *p++;

 v = *p (access first)
 p = p+1 (increment later) (pointer increment)

v = (*p)++;

 v = *p (access first)
 *p = *p+1 (increment later) (value increment)

v = *++p;

 p = p+1 (increment first) (pointer increment)
 v = *p (access later)

v = ++*p;

 *p = *p+1 (increment first) (value increment)
 v = *p (access later)

Young Won Lim
12/19/16

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

