
Young Won Lim
2/17/18

Type (1A)

Young Won Lim
2/17/18

 Copyright (c) 2010-2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Series:
2. Pointers

3 Young Won Lim
2/17/18

Byte Address
Little Endian
Big Endian

Series:
2. Pointers

4 Young Won Lim
2/17/18

Byte Address

long a; a

Increasing address

&a ?8-byte size data type

Series:
2. Pointers

5 Young Won Lim
2/17/18

Numbers in Positional Notation

long a = 0x1020304050607080;

a7 a6 a5 a4 a3 a2 a1 a0

a7 = 0 x10
a6 = 0 x20
a5 = 0 x 30
a4 = 0 x 40
a3 = 0 x50
a2 = 0 x 60
a1 = 0 x70
a0 = 0 x 80

Most Significant Byte

Least Significant Byte

⋯ 167

⋯ 166

⋯ 165

⋯ 164

⋯ 163

⋯ 162

⋯ 161

⋯ 160

8 (bytes)

the highest weight

the lowest weight

Series:
2. Pointers

6 Young Won Lim
2/17/18

Little / Big Endian Ordering of Bytes

long a;

LSByteMSByte Little Endian

a

Increasing address

MSByteLSByte Big Endian

a7 a6 a5 a4 a3 a2 a1 a0

a0 a1 a2 a3 a4 a5 a6 a7

Series:
2. Pointers

7 Young Won Lim
2/17/18

Little Endian Byte Address Example

&a

long a;
a7 a0

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

Increasing address

LSByteMSByte Little Endian

Increasing weight

Series:
2. Pointers

8 Young Won Lim
2/17/18

Big Endian Byte Address Example

&a

long a;

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

Increasing address

a0 a7

MSByteLSByte Big Endian

Increasing weight

Series:
2. Pointers

9 Young Won Lim
2/17/18

Representations of Endianness

0x3000

0x3001

0x3002

0x3003

0x3004

0x3005

0x3006

0x3007

a7

a0

0x3000

0x3001

0x3002

0x3003

0x3004

0x3005

0x3006

0x3007 a7

a0 0x3007

0x3006

0x3005

0x3004

0x3003

0x3002

0x3001

0x3000

a7

a0

0x3007

0x3006

0x3005

0x3004

0x3003

0x3002

0x3001

0x3000a7

a0

Little
Endian

Big
Endian

Little
Endian

Big
Endian

&a &a

&a &a

https://stackoverflow.com/questions/15620673/which-bit-is-the-address-of-an-integer

downward, increasing address upward, increasing address

Series:
2. Pointers

10 Young Won Lim
2/17/18

Increasing address, Increasing byte weight

Little
Endian

Big
Endian

Little
Endian

Big
Endian

&a &a

&a &a

https://stackoverflow.com/questions/15620673/which-bit-is-the-address-of-an-integer

downward, increasing address upward, increasing address

Series:
2. Pointers

11 Young Won Lim
2/17/18

Little / Big Endian Processors

Processor Endianness

Motorola 68000 Big Endian

PowerPC (PPC) Big Endian

Sun Sparc Big Endian

IBM S/390 Big Endian

Intel x86 (32 bit) Little Endian

Intel x86_64 (64 bit) Little Endian

Dec VAX Little Endian

Alpha (Big/Little) Endian

ARM (Big/Little) Endian

IA-64 (64 bit) (Big/Little) Endian

MIPS (Big/Little) Endian

http://www.yolinux.com/TUTORIALS/Endian-Byte-Order.html

Series:
2. Pointers

12 Young Won Lim
2/17/18

Pointer Types and Associated Data

data

pc

char *pc;

data

ps

short *ps;

data

pi

int *pi;

short val

char val

int val

address address address

8 bits

in
cr

e
a
si

n
g
 a

d
d
re

ss

Series:
2. Pointers

13 Young Won Lim
2/17/18

Pointer Types

data

pc

char *pc;

data

ps

short *ps;

data

pi

int *pi;

address address address

8 bits

in
cr

e
a
si

n
g
 a

d
d
re

ss

Series:
2. Pointers

14 Young Won Lim
2/17/18

Little Endian Example

data

a

b

c int a;
short b;
char c;

&a

&b

&c

in
cr

e
a
si

n
g
 a

d
d
re

ss

8 bits

data

a

b

c

&a

&b

&c

8 bits

in
cr

e
a
si

n
g
 a

d
d
re

ss

the order of definition

Series:
2. Pointers

15 Young Won Lim
2/17/18

int *, short *, char * type variables

int * pi;
short * ps;
char * pc;

pc

ps

pi

address

Not a sized representation

Series:
2. Pointers

16 Young Won Lim
2/17/18

Pointer Variable Assignment

data
char * pc;
short * ps;
int * pi;

int a;
short b;
char c;

pc

ps

pi

pi = &a;
ps = &b;
pc = &c;

address

8 bits

a

b

c

&a

&b

&c

Series:
2. Pointers

17 Young Won Lim
2/17/18

a

&a

a

&a

Pointer Type Casting

data

pc

char *pc;
pc = (char *) &a

data

ps

data

pi

address address address
short *ps;
ps = (short *) &a

int *pi;
pi = (int *) &a

a

&a

*ps

*pc

*pi

8 bits

Series:
2. Pointers

18 Young Won Lim
2/17/18

Accessing bytes of a variable

data

pc

char *pc;
pc = (char *) &a

address

a

&a

pc+3

pc+2

pc+1

pc

*(pc+3)

data

*(pc+2)

*(pc+1)

*(pc+0)

pc

char *pc;
pc = (char *) &a

address

&a

pc+3

pc+2

pc+1

pc

8 bits

Series:
2. Pointers

19 Young Won Lim
2/17/18

32-bit and 64-bit Address

32-bit machine : address : 4 bytes

64-bit machine : address : 8 bytes

pc

ps

pi

32-bit
machine
address :

4 bytes
64-bit

machine
address :

8 bytes

8 bits 8 bits

Series:
2. Pointers

20 Young Won Lim
2/17/18

64-bit machine : 8-byte address

pi ps pc

char *pc; short *ps; int *pi;

Series:
2. Pointers

21 Young Won Lim
2/17/18

64-bit machine : 8-byte address & data buses

char *pc; pc

8 bits

short *ps; ps

8 bits

int *pi; pi

8 bits

Series:
2. Pointers

22 Young Won Lim
2/17/18

32-bit machine : 4-byte address

pi ps pc

char *pc; short *ps; int *pi;

Series:
2. Pointers

23 Young Won Lim
2/17/18

64-bit machine : 8-byte address and data buses

char *pc;pc

8 bits

short *ps;ps

8 bits

int *pi;pi

8 bits

Series:
2. Pointers

24 Young Won Lim
2/17/18

Memory Alignment (1) - allocation of variables

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int a;

short b;

char c;

enforced by compilers

efficient memory access

Series:
2. Pointers

25 Young Won Lim
2/17/18

Memory Alignment (2) – integer multiple addresses

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

integer addresses =

short addresses =

character addresses =

k = 0,1,2,⋯

4⋅k

2⋅k

1⋅k

Memory Alignment:
the data address is a
multiple of the data size.

Series:
2. Pointers

26 Young Won Lim
2/17/18

Memory Alignment (3) – pointed addresses

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int *p;

short *q;

char *r;

4⋅k

2⋅k

1⋅k

Series:
2. Pointers

27 Young Won Lim
2/17/18

Memory Alignment (4) – non-pointed addresses

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int *p;

short *q;

char *r;

4⋅k + 1,2,3

2⋅k + 1

Series:
2. Pointers

28 Young Won Lim
2/17/18

Memory Alignment (5) – broken alignment

10 20 30 40 50 60 70 80

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int *p;

short *q;

char *r;

Memory access is still possible
but it takes longer time to access

(Low Efficiency)

This can happen by using inadvertent
pointer type casting

Types 29 Young Won Lim
2/17/18

Unsigned Char Addition

0xFF

0xFD

Signed: -1
Unsigned: 255

Signed: -3
Unsigned: 253

0xFC Signed: -4
Unsigned: 252

Signed (-1)
Signed (-3)
Signed (-4)

Unsigned: 255
Unsigned: 253

 508
- 256

Unsigned 252

Unsigned
Wrap around
Modulo 256

Types 30 Young Won Lim
2/17/18

Converting Signed Numbers

Signed (op) Unsigned = Unsigned (op) Unsigned

Unsigned (op) Signed = Unsigned (op) Unsigned

Signed Unsigned

Types 31 Young Won Lim
2/17/18

Mixed Operation Examples

0xFF

0xFD

Signed: i= -1
Unsigned: m= 255

Signed: j= -3
Unsigned: n= 253

0xFC Signed: -4
Unsigned: 252

m+n = 255+253-256 = 252
m-n = 255-253 = 2
i+j = -1-3 = -4
i-j = -1+3 = 2

m+j = 255+253-256 = 252
m-j = 255-253 = 2
i+n = 255+253-256 = 252
i-n = 255-253 = 2

(m > 0) = (255>0) = 1
(i > 0) = (-1 > 0) = 0
(m > n) = (255>253) = 1
(i > j) = (-1 > -3) = 1
(m < 256)=(255<0) = 0
(i < 256)=(-1<256) = 1

Types 32 Young Won Lim
2/17/18

%u conversion (32-bit)

signed char m, n, p
m=%d: 15
n=%d: -1
p=%d: 14
m=%u: 15
n=%u: 4294967295
p=%u: 14

#include <stdio.h>

int main(void) {
 char m, n, p;

 m = 0x0f;
 n = 0xff;
 p = m + n;

 printf("signed char m, n, p\n");
 printf("m=%%d: %d \n", m);
 printf("n=%%d: %d \n", n);
 printf("p=%%d: %d \n", p);
 printf("m=%%u: %u \n", m);
 printf("n=%%u: %u \n", n);
 printf("p=%%u: %u \n", p);
}

0xff 0xffffffff

Promotion to 4-byte
default integer
But with a sign extension

Types 33 Young Won Lim
2/17/18

Void and Function Prototypes

No return
value

No function
parameters

void func (void);

The void type comprises an empty set of
values; it is an incomplete object type that
cannot be completed.

a pointer type that doesn't specify
what it points to.

void *

void func (...) ; accepts a variable number of arguments (not ISO C)

void func () ; accepts a constant but unknown number of arguments

void (* x) (); pointer to a function returning no result

void * x (); function returning pointer to void

Types 34 Young Won Lim
2/17/18

Ignoring Return Value

int func (void)

(void) func (void)

(void) type casting
to ignore the return int value

Types 35 Young Won Lim
2/17/18

Void Pointer

● a pointer type that doesn't specify what it points to.

● can store an address to any non-function data type

● implicitly converted to any other pointer type on assignment

● must use an explicit cast if dereferenced inline.

void * universal data pointer

Types 36 Young Won Lim
2/17/18

#include <stdio.h>

void fint (void *a) { printf("%d\n",* (int *) a); }
void fchar (void *a) { printf("%c\n", * (char *) a); }
void ffloat (void *a) { printf("%f\n", * (float *) a); }

void main(void) {
 int a = 100;
 char b = 'B';
 float c = 3.14;

 fint (&a);
 fchar (&b);
 ffloat (&c);
}

void fint (void *a) { printf("%d\n", (int) *a); }
void fchar (void *a) { printf("%c\n", (char) *a); }
void ffloat (void *a) { printf("%f\n", (float) *a); }

dereferencing the void pointer without type-casting
not possible.

void indicates the absence of type
cannot dereference or assign to.

Dereferencing Void Pointers

Types 37 Young Won Lim
2/17/18

#include <stdio.h>

void func (void *a) {
int *p = a;

printf("%d\n", * p++);
printf("%d\n", * p++);
printf("%d\n", * p++);
printf("%d\n", * p++);
printf("%d\n", * p++);

}

void main(void) {
 int a[5] = {10, 20, 30, 40, 50};

 func (a);

}

void func (void *a) {

printf("%d\n", * (int *) a++);
printf("%d\n", * (int *) a++);
printf("%d\n", * (int *) a++);
printf("%d\n", * (int *) a++);
printf("%d\n", * (int *) a++);

}

Pointer arithmetic is not possible
on pointers of void

Pointer Arithmetic and Void Pointers

Young Won Lim
2/17/18

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun
[5] http://www.stackoverflow.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

