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Variables 

&a

data 

int a;

a can hold an integer value a 

address

&a

a = 100;

a holds the integer 100 a    100

dataaddress
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Pointer Variables

&p   

int    * p ;

*p can hold an integer value

pint    *  p ;
pointer to int 

int 

int * p;

p holds an address  

*p

p can hold the address
of an int data 

p

type variable
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Dereferencing

           p   

The content of a pointed location :
Dereferencing operator *

         *p   

        p   

The address of a variable :
Address of operator & 

           

&

p

&p 

*

           p   

          *p   

*

p
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Variables and their addresses 

&a

data 

int a; a 

address

int   * p; &p p
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Assignment of a value 

&a

data 

int a; a = 111 

address

int b; &b b = ____

b = a; 
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Assignment of an address

&a

data 

int a; a = 111 

address

int   * p; &p p = ____

p = &a; 
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Variables with initializations

&a

data 

int a; a 

address

int   * p = &a; &p p = &a
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Pointed addresses : p

p

data 

int a; a 

address

int   * p = &a; p &p

p ≡ &a
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Dereferenced Variable : *p

p

data 

int a; *p 

address

int   * p = &a; p &p

 p ≡  &a

*p ≡ *&a

*p ≡   a

assignment equivalence
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Two way to access:  a and *p

*p =100  

&a

data 

a 

address

&p p

1) Read/Write   a
2) Read/Write  *p

a = 100
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Double Pointers
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Variables and their addresses 

&a

data 

int a; a 

address

int   * p;

int  ** q;

&p p

&q q
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Initialization of Variables

&a

data 

int a = 100; a = 100 

address

int   * p = &a;

int  ** q = &p;

&p p = &a

&q q = &p
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Traditional arrow notations

&a

data 

a = 100 

address

&p p = &a

&q q = &p

&a

data 

a = 100 

address

&p p = &a

&q q = &p

LSB, little endian 
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Pointed addresses : p, q

p

data 

int a; a 

address

int   * p = &a;

int  ** q = &p;

q p 

&q q 

p = &a
q = &p
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A dereferenced variable : *p

p

data 

int a; *p 

address

int   * p = &a; &p p 

*p ≡ a
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An aliased variable : *p

int a;

int   * p = &a; p = &a *p ≡ a

   p  ≡    &a
*(p) ≡ *(&a)
* p  ≡      a

Address
assignment

Variable
aliasing

equivalent relations after 
address assignment
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Dereferenced variables : *q, **q

*q

data 

int a; **q

address

int   * p = &a;

int  ** q = &p;

q *q 

&q q 

**q ≡ a

*q ≡ p
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Aliased variables : *q, **q

int a;

int   * p = &a;

int  ** q = &p; q = &p *q ≡ p

p = &a *p ≡ a

Address
assignment

Variable 
aliasing

   q ≡    &p
*(q) ≡ *(&p)
* q ≡      p
**q ≡    *p
**q ≡     a

**q ≡ a

equivalent relations after 
address assignment
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Two aliased variables of  a : *p, **q

*q **q

q *q 

&q q 

**q ≡ a

p *p 

   &p p 

*p ≡ a

&a a 

a
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Two more ways to access a : *p, **q

**q 

*p 

&a

data 

a 

address

&p p

&q q

1)  Read / Write    a
2)  Read / Write   *p
3)  Read / Write **q
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Variable Definitions

&a

data int a;

a can hold an integer  
a 

address

&a

a = 100;

a holds 100
a      100

dataaddress
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Pointer Variable Definition

&p   

int      * p; *p holds 
a int type data 

p
int     *  p;

pointer to int

int

int * p;

p can hold an address  

*p

p holds an address

of a int type data  

p



Series : 5. 
Applications of Pointers 26 Young Won Lim

7/26/18

Double Pointer Variable Definition

&q

int    **q; **q holds a int type data   

q

int  *    *q; *q holds an address of 

a int type data  
pointer to int

int

int ** q;

q holds an address  

int   **  q; q holds an address of 

a pointer to int type data
pointer to 
pointer to int

*qq

*q **q
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Pointer Variable Examples

int a = 200;

int * p = & a;

int ** q = & p; &q   0x3CE q

dataaddress

         0x3A0

*q 0x3A0

0x3AB

q 0x3AB

&q      0x3CE

 = 0x3AB

        2000x3A0

p

**q 200

0x3A0

&p

&a a
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Arrow notations

dataaddress

p

*p

&p

  p

using an arrow notation (I)

dataaddress

p

*p

&p

  p

using an arrow notation (II)

MSB LSB

Little Endian Assumed

Simplified Abstract Drawing

Familiar, Well known 
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Pointer Variable p with an arrow notation

dataaddress

p

*p

&p

  p

200

p 0x3A0

&p     0x3AB

*p

dataaddress

        0x3A00x3AB

        2000x3A0

p&p

&a a

using an arrow notation
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Pointer Variable  q  with an arrow notation

dataaddress

*q 0x3A0

q 0x3AB

 &q      0x3CE

**q 200

0x3A0

q

*q

**q

&q   

  q

*q

&q   0x3CE q

dataaddress

        0x3A00x3AB

= 0x3AB

        2000x3A0

p&p

&a a

using an arrow notation
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Pointers – a type view 

(int)      

(int *)    

(int **)    

Types

address

data

address
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Pointers – other view

(int)      

(int *)    

(int **)    

**q     

  *q     

   q     

Types Variables

  q 

*q 

&q 

Addresses
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Single and double pointer examples (1)

int  a  ;

int        * p  ;

int        **q  ;

    *p   

    a

    *q

  **q  

     q

     p

p

q

*q

a, *p, and **q: 
int  variables
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Single and double pointer examples (2)

int  a  ;

int *      p  ;

int ** q  ;

    *p   

    a

    *q

  **q  

     q

     p

p

q

*q

p and *q : 
int pointer variables
(singlepointers)
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Single and double pointer examples (3)

int    a  ;

int *    p  ;

int **   q  ;

    *p   

    a

    *q

  **q  

     q

     p

p

q

*q

q : 
double int pointer variables
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Double pointer variable assignments

 (int)   

(int *)   

(int)     

 (int **) 

X

(float *)  

(float)   

X

 (int **) 

int  ** p, **q, *r ; q = p;

p q 

p = &r;

r
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Pointed Addresses and Data 

a =100&aint a ;

The variable a holds an integer data  

p&pint * p ;

The pointer variable p holds an address,
at this address, an integer data is stored

200

q&qint * * q ; 

The pointer variable q holds an address,
at the address q, another address *q is stored, 
at the address *q,  an integer data **q is stored

*q    30
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Dereferencing Operations

a =100&aint a 

int * p 

int * * q 

p&p *p=200   p

q&q *q  **q=30   q  *q

*(&a) = a

*(&p) = p *(p) = *p

*(&q) = q *(q) = *q *(*q) = **q

*

*

*

*

* *
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Direct access to an integer a 

a =100&aint a ;

&a
value 

a 
address

integerDirect Access

1 memory access
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Indirect access *p to an integer a 

p&pint * p ; *p=200

&p
value 

p
address

p *p

Indirect Access

Dereference Operator  *
the content of the pointed 
location

   p

2 memory accesses



Series : 5. 
Applications of Pointers 41 Young Won Lim

7/26/18

Double indirect access **q to an integer a 

q&qint * * q ; *q  **q=30

&q
value 

q
address

q *q

*q **q

Double Indirect Access

Dereference Operator *

the content of the pointed location

Dereference Operator *

the content of the pointed location

   q  *q

3 memory accesses
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Values of variables

a =100&aint a ;

int * p ;

int * * q ;

&a
value 

a 
address

&p
value 

p
address

p *p

&q
value 

q
address

q *q
*q **q

integer

address

integer

address

integer

address

p&p *p=200   p

q&q *q  **q=30   q  *q
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Swapping pointers
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p = &a

q = &b

p = &b

q = &a

Swapping integer pointers 

&p

&q

&p

&q

a = 111

b = 222

a = 111

b = 222

&a

&b

&a

&b
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Swapping integer pointers

p = &a

q = &b

&p

&q

p = &b

q = &a

&p

&q

swap_pointers(    &p,     &q );

void swap_pointers( int **, int ** );

function call

function prototype

int    *p,      *q  ;
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Pass by integer pointer reference 

void swap_pointers (int **m, int **n)
{

int* tmp;

   tmp = *m;
  *m = *n;

*n = tmp;
}

int   a,  b; 
int  *p, *q; p=&a, q=&b;

… 
swap_pointers( &p, &q );

int **    m
int *    *m

int *     tmp

int **    n
int *    *n



Series:
2. Pointer 47 Young Won Lim

7/26/18

Pass by Reference
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Variable Scopes

int main ()
{
    int x, int y;
    ...
    ...

    func1 ( 10, 20 );

    ...
    ...
}

int func1 (int a, int b)
{
    int i, int j;
    ...
    ...

    ...
    ...
}

    int x, int y;

int a, int b

    int i, int j;

i and j’s 
variable scope

x and y’s 
variable scope

Only top stack frame is active
and its variable can be accessed

Communications are performed 
only through the parameter variables

( 10,    20 )

cannot access 
each other

func1’s 
Stack 
Frame

main’s
Stack
Frame

x
y

a
b
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Pass by Reference

int main ()
{
    int x, int y;
    ...
    ...

    func1 ( &x, &y );

    ...
    ...
}

int func1 (int* a, int* b)
{
    int i, int j;
    ...
    ...

    ...
    ...
}

func1’s 
Stack 
Frame

main’s
Stack
Frame     int x, int y;

int* a, int* b

    int i, int j;

x and y’s 
variable scope

( &x,   &y )

x and y are made known to func1
func1 can read / write x and y
through their addresses 

x
y

a
b

*a
*b

 a=&x
 b=&y

*a 
*b
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Swapping integers

a = 111

b = 222

&a

&b

a = 222

b = 111

&a

&b

swap( &a, &b );

swap( int *, int * );

function call

function prototype

int a, b;



Series:
2. Pointer 51 Young Won Lim

7/26/18

Pass by integer reference 

void swap(int *p, int *q) {
int tmp;

    tmp = *p;
  *p = *q;

*q = tmp;
}

int a, b;
… 

swap( &a, &b );

int *     p
int      *q

int *     p
int      *q

  int     tmp
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Integer and Integer Pointer Types

int *     m
int *     n 

int       *m
int       *n 

m
n

*m
*n

treated as integer variables

integer pointer variables

int       *m
int       *n 

integer pointer declarations

a way of thinking

int *    

int

typesvariables
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Arrays
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Accessing array elements – using an address 

0

4

1
2
3

int x[5];

x holds the starting address
of 5 consecutive int variables 
 

5 int variables
address data

x

x + 1

x + 2

x + 3

x + 4

*x

*(x+2)

*(x+4)

*(x+1)

*(x+3)

x[0]

x[4]

x[1]
x[2]
x[3]

index data
cannot change 
address x 
(constant)
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Accessing an Array with a Pointer Variable 

int x [5] = { 1, 2, 3, 4, 5 };

int  *p = x;

x[0] 

x[4] 

x[1] 
x[2] 
x[3] 

60

90
40
70

*(x+0) 

*(x+4) 

*(x+1) 
*(x+2) 
*(x+3) 

p[0]  

p[4] 

p[1] 
p[2] 
p[3] 

*(p+0) 

*(p+4) 

*(p+1) 
*(p+2) 
*(p+3) 

x&x p&p
x is a constant symbol 
cannot be changed

p is a variable 
can point to other addresses

80
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Pointer Type Cast
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Changing the associated data type of an address 

long  a;

int   *    p;

short *    q;

char *    r;

address of a long  value

address of an int value

address of a short value

address of a char value

&a

&a

&a

&a
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Pointer Type Casting

long  a;

int   *    p;

short *    q;

char *   r;

&a

q = (short *) &a

r = (char  *) &a

p = (int     *)  &aaddress of an int value

address of a short value

address of a char value
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Re-interpretation of memory data – case I

long  a;

int   *p;

short *q;

char *r; 80

0x7080

0x50607080

0x1020304050607080

&a

q = (short *) &a

r = (char *)  &a

p = (int *) &a
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Re-interpretation of memory data – case II 

10 20 30 40 50 60 70 80

&c

q = (short *) &c

a = (long *) &c

p = (int *) &cint   *p;

short *q;

char *r;

long *a;

char  c;

r =               &c

Memory 
alignment 
constraint 
is not met

Depending on &C, the memory alignment constraint can be broken

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80
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const pointers
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const type, const pointer type (1)

const int  *p;

int * const q  ;

const int  *  const r  ;

constant integer value

constant integer pointer

constant integer value
constant integer pointer

constant
must not be changed
must not be updated
must not be written
must not be assigned 
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const type, const pointer type (2)

qqp

integerinteger

read only 

integerwr

read only 

wr

const int  *p; int * const q  ;

address address
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const type, const pointer type (3)

address

rr

read only 

integerinteger

read only 

const int  *const r  ;

wr

wr
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