
Young Won Lim
7/26/18

Pointers (1A)

Young Won Lim
7/26/18

 Copyright (c) 2010 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOfce.

mailto:youngwlim@hotmail.com

Series:
2. Pointer 3 Young Won Lim

7/26/18

Variables

&a

data

int a;

a can hold an integer value a

address

&a

a = 100;

a holds the integer 100 a 100

dataaddress

Series:
2. Pointer 4 Young Won Lim

7/26/18

Pointer Variables

&p

int * p ;

*p can hold an integer value

pint * p ;
pointer to int

int

int * p;

p holds an address

*p

p can hold the address
of an int data

p

type variable

Series:
2. Pointer 5 Young Won Lim

7/26/18

Dereferencing

 p

The content of a pointed location :
Dereferencing operator *

 *p

 p

The address of a variable :
Address of operator &

&

p

&p

*

 p

 *p

*

p

Series:
2. Pointer 6 Young Won Lim

7/26/18

Variables and their addresses

&a

data

int a; a

address

int * p; &p p

Series:
2. Pointer 7 Young Won Lim

7/26/18

Assignment of a value

&a

data

int a; a = 111

address

int b; &b b = ____

b = a;

Series:
2. Pointer 8 Young Won Lim

7/26/18

Assignment of an address

&a

data

int a; a = 111

address

int * p; &p p = ____

p = &a;

Series:
2. Pointer 9 Young Won Lim

7/26/18

Variables with initializations

&a

data

int a; a

address

int * p = &a; &p p = &a

Series:
2. Pointer 10 Young Won Lim

7/26/18

Pointed addresses : p

p

data

int a; a

address

int * p = &a; p &p

p ≡ &a

Series:
2. Pointer 11 Young Won Lim

7/26/18

Dereferenced Variable : *p

p

data

int a; *p

address

int * p = &a; p &p

 p ≡ &a

*p ≡ *&a

*p ≡ a

assignment equivalence

Series:
2. Pointer 12 Young Won Lim

7/26/18

Two way to access: a and *p

*p =100

&a

data

a

address

&p p

1) Read/Write a
2) Read/Write *p

a = 100

Series : 5.
Applications of Pointers 13 Young Won Lim

7/26/18

Double Pointers

Series : 5.
Applications of Pointers 14 Young Won Lim

7/26/18

Variables and their addresses

&a

data

int a; a

address

int * p;

int ** q;

&p p

&q q

Series : 5.
Applications of Pointers 15 Young Won Lim

7/26/18

Initialization of Variables

&a

data

int a = 100; a = 100

address

int * p = &a;

int ** q = &p;

&p p = &a

&q q = &p

Series : 5.
Applications of Pointers 16 Young Won Lim

7/26/18

Traditional arrow notations

&a

data

a = 100

address

&p p = &a

&q q = &p

&a

data

a = 100

address

&p p = &a

&q q = &p

LSB, little endian

Series : 5.
Applications of Pointers 17 Young Won Lim

7/26/18

Pointed addresses : p, q

p

data

int a; a

address

int * p = &a;

int ** q = &p;

q p

&q q

p = &a
q = &p

Series : 5.
Applications of Pointers 18 Young Won Lim

7/26/18

A dereferenced variable : *p

p

data

int a; *p

address

int * p = &a; &p p

*p ≡ a

Series : 5.
Applications of Pointers 19 Young Won Lim

7/26/18

An aliased variable : *p

int a;

int * p = &a; p = &a *p ≡ a

 p ≡ &a
*(p) ≡ *(&a)
* p ≡ a

Address
assignment

Variable
aliasing

equivalent relations after
address assignment

Series : 5.
Applications of Pointers 20 Young Won Lim

7/26/18

Dereferenced variables : *q, **q

*q

data

int a; **q

address

int * p = &a;

int ** q = &p;

q *q

&q q

**q ≡ a

*q ≡ p

Series : 5.
Applications of Pointers 21 Young Won Lim

7/26/18

Aliased variables : *q, **q

int a;

int * p = &a;

int ** q = &p; q = &p *q ≡ p

p = &a *p ≡ a

Address
assignment

Variable
aliasing

 q ≡ &p
*(q) ≡ *(&p)
* q ≡ p
**q ≡ *p
**q ≡ a

**q ≡ a

equivalent relations after
address assignment

Series : 5.
Applications of Pointers 22 Young Won Lim

7/26/18

Two aliased variables of a : *p, **q

*q **q

q *q

&q q

**q ≡ a

p *p

 &p p

*p ≡ a

&a a

a

Series : 5.
Applications of Pointers 23 Young Won Lim

7/26/18

Two more ways to access a : *p, **q

**q

*p

&a

data

a

address

&p p

&q q

1) Read / Write a
2) Read / Write *p
3) Read / Write **q

Series : 5.
Applications of Pointers 24 Young Won Lim

7/26/18

Variable Definitions

&a

data int a;

a can hold an integer
a

address

&a

a = 100;

a holds 100
a 100

dataaddress

Series : 5.
Applications of Pointers 25 Young Won Lim

7/26/18

Pointer Variable Definition

&p

int * p; *p holds
a int type data

p
int * p;

pointer to int

int

int * p;

p can hold an address

*p

p holds an address

of a int type data

p

Series : 5.
Applications of Pointers 26 Young Won Lim

7/26/18

Double Pointer Variable Definition

&q

int **q; **q holds a int type data

q

int * *q; *q holds an address of

a int type data
pointer to int

int

int ** q;

q holds an address

int ** q; q holds an address of

a pointer to int type data
pointer to
pointer to int

*qq

*q **q

Series : 5.
Applications of Pointers 27 Young Won Lim

7/26/18

Pointer Variable Examples

int a = 200;

int * p = & a;

int ** q = & p; &q 0x3CE q

dataaddress

 0x3A0

*q 0x3A0

0x3AB

q 0x3AB

&q 0x3CE

 = 0x3AB

 2000x3A0

p

**q 200

0x3A0

&p

&a a

Series : 5.
Applications of Pointers 28 Young Won Lim

7/26/18

Arrow notations

dataaddress

p

*p

&p

 p

using an arrow notation (I)

dataaddress

p

*p

&p

 p

using an arrow notation (II)

MSB LSB

Little Endian Assumed

Simplified Abstract Drawing

Familiar, Well known

Series : 5.
Applications of Pointers 29 Young Won Lim

7/26/18

Pointer Variable p with an arrow notation

dataaddress

p

*p

&p

 p

200

p 0x3A0

&p 0x3AB

*p

dataaddress

 0x3A00x3AB

 2000x3A0

p&p

&a a

using an arrow notation

Series : 5.
Applications of Pointers 30 Young Won Lim

7/26/18

Pointer Variable q with an arrow notation

dataaddress

*q 0x3A0

q 0x3AB

 &q 0x3CE

**q 200

0x3A0

q

*q

**q

&q

 q

*q

&q 0x3CE q

dataaddress

 0x3A00x3AB

= 0x3AB

 2000x3A0

p&p

&a a

using an arrow notation

Series : 5.
Applications of Pointers 31 Young Won Lim

7/26/18

Pointers – a type view

(int)

(int *)

(int **)

Types

address

data

address

Series : 5.
Applications of Pointers 32 Young Won Lim

7/26/18

Pointers – other view

(int)

(int *)

(int **)

**q

 *q

 q

Types Variables

 q

*q

&q

Addresses

Series : 5.
Applications of Pointers 33 Young Won Lim

7/26/18

Single and double pointer examples (1)

int a ;

int * p ;

int **q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

a, *p, and **q:
int variables

Series : 5.
Applications of Pointers 34 Young Won Lim

7/26/18

Single and double pointer examples (2)

int a ;

int * p ;

int ** q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

p and *q :
int pointer variables
(singlepointers)

Series : 5.
Applications of Pointers 35 Young Won Lim

7/26/18

Single and double pointer examples (3)

int a ;

int * p ;

int ** q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

q :
double int pointer variables

Series : 5.
Applications of Pointers 36 Young Won Lim

7/26/18

Double pointer variable assignments

 (int)

(int *)

(int)

 (int **)

X

(float *)

(float)

X

 (int **)

int ** p, **q, *r ; q = p;

p q

p = &r;

r

Series : 5.
Applications of Pointers 37 Young Won Lim

7/26/18

Pointed Addresses and Data

a =100&aint a ;

The variable a holds an integer data

p&pint * p ;

The pointer variable p holds an address,
at this address, an integer data is stored

200

q&qint * * q ;

The pointer variable q holds an address,
at the address q, another address *q is stored,
at the address *q, an integer data **q is stored

*q 30

Series : 5.
Applications of Pointers 38 Young Won Lim

7/26/18

Dereferencing Operations

a =100&aint a

int * p

int * * q

p&p *p=200 p

q&q *q **q=30 q *q

*(&a) = a

*(&p) = p *(p) = *p

*(&q) = q *(q) = *q *(*q) = **q

*

*

*

*

* *

Series : 5.
Applications of Pointers 39 Young Won Lim

7/26/18

Direct access to an integer a

a =100&aint a ;

&a
value

a
address

integerDirect Access

1 memory access

Series : 5.
Applications of Pointers 40 Young Won Lim

7/26/18

Indirect access *p to an integer a

p&pint * p ; *p=200

&p
value

p
address

p *p

Indirect Access

Dereference Operator *
the content of the pointed
location

 p

2 memory accesses

Series : 5.
Applications of Pointers 41 Young Won Lim

7/26/18

Double indirect access **q to an integer a

q&qint * * q ; *q **q=30

&q
value

q
address

q *q

*q **q

Double Indirect Access

Dereference Operator *

the content of the pointed location

Dereference Operator *

the content of the pointed location

 q *q

3 memory accesses

Series : 5.
Applications of Pointers 42 Young Won Lim

7/26/18

Values of variables

a =100&aint a ;

int * p ;

int * * q ;

&a
value

a
address

&p
value

p
address

p *p

&q
value

q
address

q *q
*q **q

integer

address

integer

address

integer

address

p&p *p=200 p

q&q *q **q=30 q *q

Series : 5.
Applications of Pointers 43 Young Won Lim

7/26/18

Swapping pointers

Series : 5.
Applications of Pointers 44 Young Won Lim

7/26/18

p = &a

q = &b

p = &b

q = &a

Swapping integer pointers

&p

&q

&p

&q

a = 111

b = 222

a = 111

b = 222

&a

&b

&a

&b

Series : 5.
Applications of Pointers 45 Young Won Lim

7/26/18

Swapping integer pointers

p = &a

q = &b

&p

&q

p = &b

q = &a

&p

&q

swap_pointers(&p, &q);

void swap_pointers(int **, int **);

function call

function prototype

int *p, *q ;

Series : 5.
Applications of Pointers 46 Young Won Lim

7/26/18

Pass by integer pointer reference

void swap_pointers (int **m, int **n)
{

int* tmp;

 tmp = *m;
 *m = *n;

*n = tmp;
}

int a, b;
int *p, *q; p=&a, q=&b;

…
swap_pointers(&p, &q);

int ** m
int * *m

int * tmp

int ** n
int * *n

Series:
2. Pointer 47 Young Won Lim

7/26/18

Pass by Reference

Series:
2. Pointer 48 Young Won Lim

7/26/18

Variable Scopes

int main ()
{
 int x, int y;
 ...
 ...

 func1 (10, 20);

 ...
 ...
}

int func1 (int a, int b)
{
 int i, int j;
 ...
 ...

 ...
 ...
}

 int x, int y;

int a, int b

 int i, int j;

i and j’s
variable scope

x and y’s
variable scope

Only top stack frame is active
and its variable can be accessed

Communications are performed
only through the parameter variables

(10, 20)

cannot access
each other

func1’s
Stack
Frame

main’s
Stack
Frame

x
y

a
b

Series:
2. Pointer 49 Young Won Lim

7/26/18

Pass by Reference

int main ()
{
 int x, int y;
 ...
 ...

 func1 (&x, &y);

 ...
 ...
}

int func1 (int* a, int* b)
{
 int i, int j;
 ...
 ...

 ...
 ...
}

func1’s
Stack
Frame

main’s
Stack
Frame int x, int y;

int* a, int* b

 int i, int j;

x and y’s
variable scope

(&x, &y)

x and y are made known to func1
func1 can read / write x and y
through their addresses

x
y

a
b

*a
*b

 a=&x
 b=&y

*a
*b

Series:
2. Pointer 50 Young Won Lim

7/26/18

Swapping integers

a = 111

b = 222

&a

&b

a = 222

b = 111

&a

&b

swap(&a, &b);

swap(int *, int *);

function call

function prototype

int a, b;

Series:
2. Pointer 51 Young Won Lim

7/26/18

Pass by integer reference

void swap(int *p, int *q) {
int tmp;

 tmp = *p;
 *p = *q;

*q = tmp;
}

int a, b;
…

swap(&a, &b);

int * p
int *q

int * p
int *q

 int tmp

Series:
2. Pointer 52 Young Won Lim

7/26/18

Integer and Integer Pointer Types

int * m
int * n

int *m
int *n

m
n

*m
*n

treated as integer variables

integer pointer variables

int *m
int *n

integer pointer declarations

a way of thinking

int *

int

typesvariables

Series:
2. Pointer 53 Young Won Lim

7/26/18

Arrays

Series:
2. Pointer 54 Young Won Lim

7/26/18

Accessing array elements – using an address

0

4

1
2
3

int x[5];

x holds the starting address
of 5 consecutive int variables

5 int variables
address data

x

x + 1

x + 2

x + 3

x + 4

*x

*(x+2)

*(x+4)

*(x+1)

*(x+3)

x[0]

x[4]

x[1]
x[2]
x[3]

index data
cannot change
address x
(constant)

Series:
2. Pointer 55 Young Won Lim

7/26/18

Accessing an Array with a Pointer Variable

int x [5] = { 1, 2, 3, 4, 5 };

int *p = x;

x[0]

x[4]

x[1]
x[2]
x[3]

60

90
40
70

*(x+0)

*(x+4)

*(x+1)
*(x+2)
*(x+3)

p[0]

p[4]

p[1]
p[2]
p[3]

*(p+0)

*(p+4)

*(p+1)
*(p+2)
*(p+3)

x&x p&p
x is a constant symbol
cannot be changed

p is a variable
can point to other addresses

80

Series:
2. Pointer 56 Young Won Lim

7/26/18

Pointer Type Cast

Series:
2. Pointer 57 Young Won Lim

7/26/18

Changing the associated data type of an address

long a;

int * p;

short * q;

char * r;

address of a long value

address of an int value

address of a short value

address of a char value

&a

&a

&a

&a

Series:
2. Pointer 58 Young Won Lim

7/26/18

Pointer Type Casting

long a;

int * p;

short * q;

char * r;

&a

q = (short *) &a

r = (char *) &a

p = (int *) &aaddress of an int value

address of a short value

address of a char value

Series:
2. Pointer 59 Young Won Lim

7/26/18

Re-interpretation of memory data – case I

long a;

int *p;

short *q;

char *r; 80

0x7080

0x50607080

0x1020304050607080

&a

q = (short *) &a

r = (char *) &a

p = (int *) &a

Series:
2. Pointer 60 Young Won Lim

7/26/18

Re-interpretation of memory data – case II

10 20 30 40 50 60 70 80

&c

q = (short *) &c

a = (long *) &c

p = (int *) &cint *p;

short *q;

char *r;

long *a;

char c;

r = &c

Memory
alignment
constraint
is not met

Depending on &C, the memory alignment constraint can be broken

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80

Series:
2. Pointer 61 Young Won Lim

7/26/18

const pointers

Series:
2. Pointer 62 Young Won Lim

7/26/18

const type, const pointer type (1)

const int *p;

int * const q ;

const int * const r ;

constant integer value

constant integer pointer

constant integer value
constant integer pointer

constant
must not be changed
must not be updated
must not be written
must not be assigned

Series:
2. Pointer 63 Young Won Lim

7/26/18

const type, const pointer type (2)

qqp

integerinteger

read only

integerwr

read only

wr

const int *p; int * const q ;

address address

Series:
2. Pointer 64 Young Won Lim

7/26/18

const type, const pointer type (3)

address

rr

read only

integerinteger

read only

const int *const r ;

wr

wr

Series:
2. Pointer 65 Young Won Lim

7/26/18

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

