
Young Won Lim
7/12/18

Background – Functions (1C)

Young Won Lim
7/12/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Background (1C)
Functions 3 Young Won Lim

7/12/18

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Background (1C)
Functions 4 Young Won Lim

7/12/18

First-Class Functions

first-class functions

functions are treated as first-class citizens

the function names do not have any special status

they are treated like ordinary variables with a function type.

the language supports
● passing functions as arguments to other functions,
● returning functions as the values from other functions,
● assigning functions to variables
● storing functions in data structures.

● supporting anonymous functions (function literals) as well

https://en.wikipedia.org/wiki/First-class_function

fx y

gx z

funcd

passing a

function

returning

a function

Background (1C)
Functions 5 Young Won Lim

7/12/18

Higher-Order and First order Functions

first-class functions are a necessity

in the functional programming style

where higher-order functions are widely used

A higher-order function is a function

that takes other functions as arguments

or returns a function as result.

A first-order function is a function

that does not takes other functions as arguments

nor returns a function as result.

https://en.wikipedia.org/wiki/First-class_function

Background (1C)
Functions 6 Young Won Lim

7/12/18

Higher-Order Function Example

A simple example of a higher-order function

the map function,

which takes a function and a list,

as its arguments,

returns the list formed

by applying the function

to each member of the list.

For a language to support map, (higher-ordered function)

it must support passing a function as an argument.

https://en.wikipedia.org/wiki/First-class_function

map (+3) [1, 2, 3]

[4, 5, 6]

(+3) :: a -> a

A function argument

Background (1C)
Functions 7 Young Won Lim

7/12/18

Functionals in mathematics

a higher-order function

(functional, functional form or functor)

is a function that does at least one of the following:

 takes one or more functions as arguments

 (i.e. procedural parameters),

 returns a function as its result.

All other functions are first-order functions.

https://en.wikipedia.org/wiki/Functor

Background (1C)
Functions 8 Young Won Lim

7/12/18

Functional Examples

In mathematics higher-order functions are

also termed operators or functionals.

The differential operator in calculus is a common example,

since it maps a function to its derivative, also a function.

https://en.wikipedia.org/wiki/Functor

(D2
−2 D+1) f (x)

f ' ' (x) − 2 f ' (x) + f (x)

Background (1C)
Functions 9 Young Won Lim

7/12/18

Functors in mathematics

Higher-order functions should not be confused

with other uses of the word "functor" in mathematics

a functor is a map between categories

Let C and D be categories.

A functor F from C to D is a mapping that

 associates to each object X in C

an object F(X) in D,

 associates to each morphism f : X → Y in C

 a morphism F(f) : F(X) → F(Y) in D

https://en.wikipedia.org/wiki/Functor

X F(X)

f : X → Y F(f) : F(X) → F(Y)

C D

Background (1C)
Functions 10 Young Won Lim

7/12/18

Functors and morphism

Let C and D be categories.

A functor F from C to D is a mapping that

 associates to each object X in C

an object F(X) in D,

 associates to each morphism f : X → Y in C

 a morphism F(f) : F(X) → F(Y) in D

such that the following two conditions hold:

 F(id
X
) = id

F(X)
 for every object X in C, preserve identity morphisms

 F(g f) = F(g) F(f)∘ ∘ for all morphisms preseve composition morphisms

f : X → Y and g : Y → Z in C.

functors must preserve

identity morphisms and

composition of morphisms.

https://en.wikipedia.org/wiki/Functor

Background (1C)
Functions 11 Young Won Lim

7/12/18

Function Definition

Function Definition I.

square x = x * x - function type is inferred → not efficient Type Inference

Function Definition II.

square :: Double -> Double – function type declaration

square x = x * x – function definition

http://www.toves.org/books/hsfun/

● function type declaration
● function definition

Background (1C)
Functions 12 Young Won Lim

7/12/18

Type Declaration

Type Declaration

the declaration of an identifier's type

identifier name :: type name ...

http://www.toves.org/books/hsfun/

type names in
Haskell always
begin with a
capital letter

identifier names
(including function
identifiers) must
always begin with a
lower-case letter

Background (1C)
Functions 13 Young Won Lim

7/12/18

Function Types and Type Classes

Function Definition I.

square x = x * x

Function Definition II.

square :: Double -> Double

square x = x * x

http://www.toves.org/books/hsfun/

● function type declaration

function definition

function definition

● function type 1
● function type 2
●

● function type n

type class – a set of types

=

=

Requirements

Subclasses

Background (1C)
Functions 14 Young Won Lim

7/12/18

Curry & Uncurry

f :: a -> b -> c the curried form of g :: (a, b) -> c

f = curry g
g = uncurry f

f x y = g (x,y)

the curried form is usually more convenient
because it allows partial application.

all functions are considered curried

all functions take just one argument

https://wiki.haskell.org/Currying

f :: a -> b -> c g :: (a, b) -> c

currying

uncurrying

f x y g (x, y)

the curried form

Background (1C)
Functions 15 Young Won Lim

7/12/18

Functions : First-class Data Types

functions are first-class data types

Haskell treats functions as regular data,

just like integers, or floating-point values, or other types.

● a function can take other functions as parameters

● a function takes a parameter and produces another function (curried function)

http://www.toves.org/books/hsfun/

f x y

(f x) y

g y

f :: a -> b -> c

g :: b -> c

f :: a -> (b -> c)

f

g

x

y z

a (b->c)

b c

f :: a -> b -> c

f x returns a function of type b -> c

Background (1C)
Functions 16 Young Won Lim

7/12/18

Currying Examples

f
x

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

f
y

x

f
x

y

Background (1C)
Functions 17 Young Won Lim

7/12/18

Uncurrying Examples

fn :: a -> b -> c -> d

uncurry $ fn :: (a, b) -> c -> d

uncurry . uncurry $ fn :: (a, b, c) -> d

https://wiki.haskell.org/Lifting

Background (1C)
Functions 18 Young Won Lim

7/12/18

Polymorphic Functions

specific types vs. arbitrary types

a polymorphic functions – an abstract type

each type variable is generally a lower-case letter.

Example) A translate function

takes a function f and a distance d

returns a new function g

that is f "translated" d units to the right

http://www.toves.org/books/hsfun/

Background (1C)
Functions 19 Young Won Lim

7/12/18

Polymorphic Function Examples

translate :: (Double -> Double) -> Double -> (Double -> Double)

translate f d = g where g x = f (x – d)

translate :: (Double -> a) -> Double -> (Double -> a)

http://www.toves.org/books/hsfun/

fx y
Double Double

gx z
Double Double

translated
Double

fx – d z
Double Double

Background (1C)
Functions 20 Young Won Lim

7/12/18

Currying

Currying recursively transforms
a function that takes multiple arguments
into a function that takes just a single argument and
returns another function if any arguments are still needed.

f :: a -> b -> c

https://wiki.haskell.org/Currying

f x y

(f x) y

g y

f :: a -> b -> c

g :: b -> c

f :: a -> (b -> c)

f

g

x

y z

a (b->c)

b c

f :: a -> b -> c

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Background (1C)
Functions 21 Young Won Lim

7/12/18

Partially Applied Functions – f, (f x)

f :: a -> b -> c -> d -> e
f x y z w = … f

x
y
z
w

f x

x
y
z
w

g1 :: b -> c -> d -> e
g1 y z w = …

(f x) y z w

Background (1C)
Functions 22 Young Won Lim

7/12/18

Partially Applied Functions – (f x y), (f x y z)

g2 :: c -> d -> e
g2 z w = … f x y

x
y

z
w

 f x y z

x
y
z

w

g3 :: d -> e
g3 w = …

(f x y z) w

(f x y) z w

Background (1C)
Functions 23 Young Won Lim

7/12/18

Partially Applied Functions – g1, g2, g3

f x

x
y
z
w

f x y

x
y

z
w

 f x y z

x
y
z

w

g1

x
y
z
w

(f x) = g1

g2

x
y

z
w

g3

x
y
z

w

(f x y) = g2

(f x y z) = g3

Background (1C)
Functions 24 Young Won Lim

7/12/18

Returning Functions

ff

x

f x

x
y
z
w

g1g1

x
y

g1 y

x
y

z
w

g1

x
y
z
w

g2

x
y

z
w

g2g2

x
y

z
g2 z

x
y
z

w

g3

x
y
z

w

f x returns g1 function

g1 y returns g2 function

g2 z returns g3 function

Background (1C)
Functions 25 Young Won Lim

7/12/18

Currying Examples

f

g1

x

y

f :: a -> b -> c -> d -> e

g2z

g3w z

f :: a -> (b -> (c -> (d -> e)))

d e

c (d -> e)

b (c -> (d -> e))

(b -> (c -> (d -> e)))a ((((f x) y) z) w)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Background (1C)
Functions 26 Young Won Lim

7/12/18

Currying Examples

f

g1

x

y

f :: a -> b -> c -> d -> e

g2z

g3w z

f :: a -> (b -> (c -> (d -> e)))

d e

c (d -> e)

b (c -> (d -> e))

(b -> (c -> (d -> e)))a ((((f x) y) w) z)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

g1

Background (1C)
Functions 27 Young Won Lim

7/12/18

Currying Examples

f

g1

x

y

f :: a -> b -> c -> d -> e

g2z

g3w z

f :: a -> (b -> (c -> (d -> e)))

d e

c (d -> e)

b (c -> (d -> e))

(b -> (c -> (d -> e)))a ((((f x) y) z) w)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

g2

Background (1C)
Functions 28 Young Won Lim

7/12/18

Currying Examples

f

g1

x

y

f :: a -> b -> c -> d -> e

g2z

g3w z

f :: a -> (b -> (c -> (d -> e)))

d e

c (d -> e)

b (c -> (d -> e))

(b -> (c -> (d -> e)))a ((((f x) y) z) w)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Background (1C)
Functions 29 Young Won Lim

7/12/18

Currying Examples

mult :: Int -> Int -> Int -> Int f :: a -> (b -> (c -> d))

(((f x) y) z)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(((mult x) y) z)

f

x

y

z

w
Int

IntInt

Int

Background (1C)
Functions 30 Young Won Lim

7/12/18

Partial Applications

mult :: Int -> Int -> Int -> Int

f :: Int -> (Int -> (Int -> Int))
f x y z

f x :: Int -> (Int -> Int)
g1 :: Int -> (Int -> Int)
g1 y z

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

f x y :: Int -> Int
g2 :: Int -> Int
g2 z

mult x y z

mult a
1

y z = g1 y z

mult a
1

a
2

z = g2 z

mult a
1

a
2

a
3

f :: Int -> (Int -> (Int -> Int))

constants

Background (1C)
Functions 31 Young Won Lim

7/12/18

Returning Functions

mult :: Int -> Int -> Int -> Int mult x y z

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

mult a
1

y z

mult a
1

a
2

z

mult a
1

a
2

a
3

f

g1

x

y

g2z w
Int Int

Int (Int -> Int)

(Int -> (Int -> Int))Int

Background (1C)
Functions 32 Young Won Lim

7/12/18

Currying Examples

fx

mult :: Int -> Int -> Int -> Int

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

fy

x

fz

x

y

mult x y z

mult a
1

y z

mult a
1

a
2

z

mult a
1

a
2

a
3

Background (1C)
Functions 33 Young Won Lim

7/12/18

Anonymous Function

\x -> x + 1

(\x -> x + 1) 4

5 :: Integer

(\x y -> x + y) 3 5

8 :: Integer

addOne = \x -> x + 1

https://wiki.haskell.org/Anonymous_function

Lambda Expression

Background (1C)
Functions 34 Young Won Lim

7/12/18

 cylinder :: (RealFloat a) => a -> a -> a

 cylinder r h =

 let sideArea = 2 * pi * r * h

 topArea = pi * r ^2

 in sideArea + 2 * topArea

The form is let <bindings> in <expression>.

The names that you define in the let part

are accessible to the expression after the in part.

Notice that the names are also aligned in a single column.

For now it just seems that let puts the bindings first

and the expression that uses them later

whereas where is the other way around.

http://learnyouahaskell.com/syntax-in-functions

let … in …

Background (1C)
Functions 35 Young Won Lim

7/12/18

$ a convenience function that eliminates many parentheses.

When a $ is encountered, the expression on its right

is applied as the parameter to the function on its left.

writing an opening parentheses (

and then writing a closing one)

on the far right side of the expression.

http://learnyouahaskell.com/higher-order-functions

$ a single argument

func $ value

a single argument

$ a single argument

(a single argument)

far right side

Background (1C)
Functions 36 Young Won Lim

7/12/18

($) :: (a -> b) -> a -> b

f $ x = f x

f :: (a -> b)

x :: a

Function application with a space f x

- high precedence

- left-associative f a b c = ((f a) b) c)

Function application with $ f $ x

- the lowest precedence

- right associative f $ a $ b $ c = f (a (b c))

http://learnyouahaskell.com/higher-order-functions

$ Function Application

 f :: (a -> b) : left function

 x :: a : right value

f x :: b : result

Background (1C)
Functions 37 Young Won Lim

7/12/18

sum (map sqrt [1..130])

due to a low precedence

sum $ map sqrt [1..130]

sqrt 3 + 4 + 9

((sqrt 3) + (4 + 9))

sqrt (3 + 4 + 9)

sqrt $ 3 + 4 + 9

http://learnyouahaskell.com/higher-order-functions

$ Function Application Examples

Background (1C)
Functions 38 Young Won Lim

7/12/18

because $ is right-associative

f (g (z x))

f $ g $ z x

sum (filter (> 10) (map (*2) [2..10]))

sum $ filter (> 10) $ map (*2) [2..10]

http://learnyouahaskell.com/higher-order-functions

$ Right Associative Examples

Background (1C)
Functions 39 Young Won Lim

7/12/18

But apart from getting rid of parentheses,

$ means that function application

can be treated just like another function.

map function application over a list of functions.

map ($ 3) [(4+), (10*), (^2), sqrt]

[(4+ $ 3), (10* $ 3), (^2 $ 3), sqrt $ 3]

[7.0, 30.0, 9.0, 1.7320508075688772]

http://learnyouahaskell.com/higher-order-functions

$ Map Function Application Examples

Background (1C)
Functions 40 Young Won Lim

7/12/18

const x _ = x

Prelude> const 3 333

3

Prelude> const 3 99999

3

useful for passing to higher-order functions

when you don't need all their flexibility.

For example, the monadic sequence operator >>

can be defined in terms of the monadic bind operator as

x >> y = x >>= const y

(>>) = (. const) . (>>=)

https://stackoverflow.com/questions/7402528/whats-the-point-of-const-in-the-haskell-prelude

const function

Background (1C)
Functions 41 Young Won Lim

7/12/18

Prelude> let x = read "True"

Prelude> :t x

x :: Read a => a

x doesn't have a concrete type.

x is sort of an expression

that can provide a value of a concrete type,

when we ask for it.

ask x to be an Int or a Bool or anything

Prelude> x :: Bool

True

https://stackoverflow.com/questions/7402528/whats-the-point-of-const-in-the-haskell-prelude
http://zvon.org/other/haskell/Outputprelude/read_f.html

read function

Input: read "12"::Int

Output: 12

Input: read "12"::Double

Output: 12.0

Input: read "1.22"::Double

Output: 1.22

https://stackoverflow.com/questions/7402528/whats-the-point-of-const-in-the-haskell-prelude
http://zvon.org/other/haskell/Outputprelude/read_f.html

Background (1C)
Functions 42 Young Won Lim

7/12/18

replicate Int -> a -> [a]
creates a list of length given by the first argument
and the items having value of the second argument

take Int -> [a] -> [a]
creates a list, the first argument determines,
how many items should be taken from the list passed
as the second argument

repeat a -> [a]
it creates an infinite list where all items are the first argument

cycle [a] -> [a]
it creates a circular list from a finite one

Iterate (a -> a) -> a -> [a]
creates an infinite list where the first item is calculated
by applying the function on the second argument, the second item
by applying the function on the previous result and so on.

http://zvon.org/other/haskell/Outputprelude/cycle_f.html

replicate, take, repeat, cycle, iterate

Background (1C)
Functions 43 Young Won Lim

7/12/18

Input: replicate 3 5

Output: [5,5,5]

Input: replicate 4 "aa"

Output: ["aa","aa","aa","aa"]

Input: replicate 5 'a'

Output: "aaaaa"

http://zvon.org/other/haskell/Outputprelude/cycle_f.html

replicate, take, repeat, cycle, iterate examples

Input: take 5 [1,2,3,4,5,6,7]
Output: [1,2,3,4,5]

Input: take 5 [1,2]
Output: [1,2]

Input: take 0 [1,2,3,4,5,6,7]
Output: []

Input: take 5 (repeat 3)
Output: [3,3,3,3,3]

Input: take 7 (iterate (2*) 1)
Output: [1,2,4,8,16,32,64]

Input: take 10 (cycle [1,2,3])
Output: [1,2,3,1,2,3,1,2,3,1]

Input: take 4 (repeat 3)
Output: [3,3,3,3]

Input: take 6 (repeat 'A')
Output: "AAAAAA"

Input: take 5 (repeat "A")
Output: ["A","A","A","A","A"]

Input: take 10 (cycle [1,2,3])
Output: [1,2,3,1,2,3,1,2,3,1]

Input: take 10 (cycle "ABC")
Output: "ABCABCABCA"

Haskell Overview 44 Young Won Lim
7/12/18

flip

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

flip f takes its (first) two arguments in the reverse order of f.

https://www.haskell.org/hoogle/?hoogle=flip

Haskell Overview 45 Young Won Lim
7/12/18

flip

https://stackoverflow.com/questions/14397128/how-does-the-flip-function-work

flip :: (a -> b -> c) -> b -> a -> c

flip f = g

 where

 g a b = f b a

flip :: (a -> b -> c) -> b -> a -> c

flip f = g

 where

 g x y = f y x

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = g

 where

 g = f y x

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = g x y

 where

 g a b = f b a

flip f x y = g x y

flip f x = g x

flip f = g

Applicatives
Sequencing (3C) 46 Young Won Lim

7/12/18

flip

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

flip f takes its (first) two arguments

in the reverse order of f.

f :: (a -> b -> c)

flip f :: (b -> a -> c)

https://www.haskell.org/hoogle/?hoogle=flip

c
a
b

c
b
a

Applicatives
Sequencing (3C) 47 Young Won Lim

7/12/18

flip implementation

https://stackoverflow.com/questions/14397128/how-does-the-flip-function-work

flip :: (a -> b -> c) -> b -> a -> c

flip f = g

 where

 g a b = f b a

flip :: (a -> b -> c) -> b -> a -> c

flip f = g

 where

 g x y = f y x

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = g

 where

 g = f y x

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = g x y

 where

 g a b = f b a

flip f x y = g x y

flip f x = g x

flip f = g

Young Won Lim
7/12/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48

