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Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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First-Class Functions

first-class functions 

functions are treated as first-class citizens 

the function names do not have any special status 

they are treated like ordinary variables with a function type.

the language supports 
● passing functions as arguments to other functions, 
● returning functions as the values from other functions, 
● assigning functions to variables 
● storing functions in data structures.

● supporting anonymous functions (function literals) as well

https://en.wikipedia.org/wiki/First-class_function

fx y

gx z

funcd

passing a

function

returning 

a function
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Higher-Order and First order Functions

first-class functions are a necessity 

in the functional programming style 

where higher-order functions are widely used

A higher-order function is a function 

that takes other functions as arguments 

or returns a function as result. 

A first-order function is a function 

that does not takes other functions as arguments 

nor returns a function as result. 

https://en.wikipedia.org/wiki/First-class_function
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Higher-Order Function Example

A simple example of a higher-order function 

the map function, 

which takes a function and a list, 

as its arguments,

returns the list formed 

by applying the function 

to each member of the list. 

For a language to support map, (higher-ordered function)

it must support passing a function as an argument.

https://en.wikipedia.org/wiki/First-class_function

map (+3) [1, 2, 3]

[4, 5, 6]

(+3) :: a -> a  

A function argument 
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Functionals in mathematics 

a higher-order function 

(functional, functional form or functor)

is a function that does at least one of the following:

    takes one or more functions as arguments 

    (i.e. procedural parameters),

    returns a function as its result.

All other functions are first-order functions. 

https://en.wikipedia.org/wiki/Functor
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Functional Examples

In mathematics higher-order functions are 

also termed operators or functionals. 

The differential operator in calculus is a common example, 

since it maps a function to its derivative, also a function. 

https://en.wikipedia.org/wiki/Functor

(D2
−2 D+1) f (x)

f ' ' (x) − 2 f ' (x) + f (x )
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Functors in mathematics 

Higher-order functions should not be confused 

with other uses of the word "functor" in mathematics

a functor is a map between categories

Let C and D be categories. 

A functor F from C to D is a mapping that

    associates to each object X in C 

an object F(X) in D,

    associates to each morphism f : X → Y in C 

    a morphism F(f) : F(X) → F(Y) in D 

https://en.wikipedia.org/wiki/Functor

X F(X)

f : X → Y F(f) : F(X) → F(Y)

C D
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Functors and morphism 

Let C and D be categories. 

A functor F from C to D is a mapping that

    associates to each object X in C 

an object F(X) in D,

    associates to each morphism f : X → Y in C 

    a morphism F(f) : F(X) → F(Y) in D 

such that the following two conditions hold:

        F(id
X
) = id

F(X)
 for every object X in C, preserve identity morphisms 

        F(g  f) = F(g)  F(f)∘ ∘  for all morphisms preseve composition morphisms  

f : X → Y  and g : Y → Z  in C.

functors must preserve 

identity morphisms and 

composition of morphisms.

https://en.wikipedia.org/wiki/Functor
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Function Definition

Function Definition I.

square x = x * x - function type is inferred → not efficient Type Inference 

Function Definition II.

square :: Double -> Double – function type declaration 

square x = x * x – function definition

http://www.toves.org/books/hsfun/

● function type declaration 
● function definition 
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Type Declaration

Type Declaration 

the declaration of an identifier's type 

identifier name  ::  type name ... 

http://www.toves.org/books/hsfun/

type names in 
Haskell always 
begin with a 
capital letter

identifier names 
(including function 
identifiers) must 
always begin with a 
lower-case letter
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Function Types and Type Classes 

Function Definition I.

square x = x * x 

Function Definition II.

square :: Double -> Double

square x = x * x 

http://www.toves.org/books/hsfun/

● function type declaration 

function definition 

function definition 

● function type 1
● function type 2 
●

● function type n 

type class – a set of types

=

=

Requirements

Subclasses 
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Curry & Uncurry 

f :: a -> b -> c     the curried form of g :: (a, b) -> c

f = curry g
g = uncurry f

f x y = g (x,y)    

the curried form is usually more convenient 
because it allows partial application.

all functions are considered curried

all functions take just one argument

https://wiki.haskell.org/Currying

f :: a -> b -> c g :: (a, b) -> c

currying

uncurrying

f   x   y g (x, y)    

the curried form 
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Functions : First-class Data Types

functions are first-class data types

Haskell treats functions as regular data, 

just like integers, or floating-point values, or other types. 

● a function can take other functions as parameters 

● a function takes a parameter and produces another function (curried function)

http://www.toves.org/books/hsfun/

f x y

(f x) y

g y

f :: a -> b -> c    

g :: b -> c    

f :: a -> (b -> c)    

f

g

x

y z

a (b->c)

b c

f :: a -> b -> c

f x returns a function of type b -> c 
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Currying Examples

f
x 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

f
y 

x

f
x 

y 
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Uncurrying Examples

fn :: a -> b -> c -> d

uncurry $ fn :: (a, b) -> c -> d

uncurry . uncurry  $ fn :: (a, b, c) -> d

https://wiki.haskell.org/Lifting
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Polymorphic Functions

specific types vs. arbitrary types

a polymorphic functions – an abstract type

each type variable is generally a lower-case letter.

Example) A translate function 

takes a function f and a distance d 

returns a new function g 

that is f "translated" d units to the right

http://www.toves.org/books/hsfun/
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Polymorphic Function Examples

translate :: (Double -> Double) -> Double -> (Double -> Double)

translate f d = g where g x = f (x – d)

translate :: (Double -> a) -> Double -> (Double -> a)

http://www.toves.org/books/hsfun/

fx y
Double Double

gx z
Double Double

translated
Double

fx – d z
Double Double
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Currying 

Currying recursively transforms 
a function that takes multiple arguments 
into a function that takes just a single argument and 
returns another function if any arguments are still needed.

f :: a -> b -> c    

https://wiki.haskell.org/Currying

f x y

(f x) y

g y

f :: a -> b -> c    

g :: b -> c    

f :: a -> (b -> c)    

f

g

x

y z

a (b->c)

b c

f :: a -> b -> c

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Partially Applied Functions – f, (f x)

f :: a -> b -> c -> d -> e
f  x  y  z  w  = …  f

x
y
z
w

f x

x
y
z
w

g1 :: b -> c -> d -> e
g1  y  z  w  = …  

(f   x)   y   z   w  
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Partially Applied Functions – (f x y), (f x y z)

g2 :: c -> d -> e
g2   z   w  = …  f x y

x
y

z
w

 f x y z

x
y
z

w

g3 ::  d -> e
g3   w  = …  

(f   x   y   z)   w  

(f   x   y)   z   w  
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Partially Applied Functions – g1, g2, g3 

f x

x
y
z
w

f x y

x
y

z
w

  f x y z

x
y
z

w

g1

x
y
z
w

(f  x) = g1

g2

x
y

z
w

g3

x
y
z

w

(f  x  y) = g2

(f  x  y  z) = g3
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Returning Functions

ff

x

f x

x
y
z
w

g1g1

x
y

g1 y

x
y

z
w

g1

x
y
z
w

g2

x
y

z
w

g2g2

x
y

z
g2 z

x
y
z

w

g3

x
y
z

w

f x returns g1 function

g1 y returns g2 function

g2 z returns g3 function
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Currying Examples

f

g1

x 

y

f :: a -> b -> c -> d -> e

g2z

g3w z

f :: a -> (b -> (c -> (d -> e)))

d e

c (d -> e)

b (c -> (d -> e))

(b -> (c -> (d -> e)))a ((((f x) y) z) w)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Currying Examples

f

g1

x 

y

f :: a -> b -> c -> d -> e

g2z

g3w z

f :: a -> (b -> (c -> (d -> e)))

d e

c (d -> e)

b (c -> (d -> e))

(b -> (c -> (d -> e)))a ((((f x) y) w) z)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

g1
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Currying Examples

f

g1

x 

y

f :: a -> b -> c -> d -> e

g2z

g3w z

f :: a -> (b -> (c -> (d -> e)))

d e

c (d -> e)

b (c -> (d -> e))

(b -> (c -> (d -> e)))a ((((f x) y) z) w)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

g2
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Currying Examples

f

g1

x 

y

f :: a -> b -> c -> d -> e

g2z

g3w z

f :: a -> (b -> (c -> (d -> e)))

d e

c (d -> e)

b (c -> (d -> e))

(b -> (c -> (d -> e)))a ((((f x) y) z) w)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Currying Examples

mult :: Int -> Int -> Int -> Int f :: a -> (b -> (c -> d))

(((f x) y) z)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(((mult x) y) z) 

f

x 

y

z

w
Int

IntInt

Int
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Partial Applications

mult :: Int -> Int -> Int -> Int 

f :: Int -> (Int -> (Int -> Int))
f x y z

f x :: Int -> (Int -> Int)
g1 :: Int -> (Int -> Int)
g1 y z

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

f x y :: Int -> Int
g2    :: Int -> Int
g2 z

mult x y z

mult a
1

y z = g1 y z

mult a
1

a
2

z = g2 z

mult a
1

a
2

a
3

f :: Int -> (Int -> (Int -> Int))

constants
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Returning Functions

mult :: Int -> Int -> Int -> Int mult x y z

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

mult a
1

y z

mult a
1

a
2

z

mult a
1

a
2

a
3

f

g1

x 

y

g2z w
Int Int

Int (Int -> Int)

(Int -> (Int -> Int))Int
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Currying Examples

fx 

mult :: Int -> Int -> Int -> Int 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

fy 

x

fz 

x

y

mult x y z

mult a
1

y z

mult a
1

a
2

z

mult a
1

a
2

a
3
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Anonymous Function 

\x -> x + 1

(\x -> x + 1) 4

5 :: Integer

(\x y -> x + y) 3 5

8 :: Integer

addOne = \x -> x + 1

https://wiki.haskell.org/Anonymous_function

Lambda Expression
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    cylinder :: (RealFloat a) => a -> a -> a  

    cylinder r h = 

        let sideArea = 2 * pi * r * h  

             topArea = pi * r ^2  

        in  sideArea + 2 * topArea  

The form is let <bindings> in <expression>. 

The names that you define in the let part 

are accessible to the expression after the in part. 

Notice that the names are also aligned in a single column. 

For now it just seems that let puts the bindings first 

and the expression that uses them later 

whereas where is the other way around.

http://learnyouahaskell.com/syntax-in-functions

let … in … 
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$ a convenience function that eliminates many parentheses. 

When a $ is encountered, the expression on its right 

is applied as the parameter to the function on its left.

writing an opening parentheses (

and then writing a closing one )

on the far right side of the expression.

http://learnyouahaskell.com/higher-order-functions

$ a single argument 

func   $    value

a single argument

$ a single argument

( a single argument )

far right side



Background (1C)
Functions 36 Young Won Lim

7/12/18

($) :: (a -> b) -> a -> b  

f $ x = f x  

f :: (a -> b) 

x :: a

Function application with a space f    x

- high precedence

- left-associative f a b c = ((f a) b) c)

Function application with $ f $ x

- the lowest precedence

- right associative f $ a $ b $ c = f (a (b c))

http://learnyouahaskell.com/higher-order-functions

$ Function Application

   f :: (a -> b)  : left function

  x :: a  : right value

f x :: b : result 
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sum (map sqrt [1..130])

due to a low precedence

sum $ map sqrt [1..130]

sqrt 3 + 4 + 9

((sqrt 3) + (4 + 9))

sqrt (3 + 4 + 9)

sqrt $ 3 + 4 + 9 

http://learnyouahaskell.com/higher-order-functions

$ Function Application Examples
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because $ is right-associative

f (g (z x)) 

f $ g $ z x

sum (filter (> 10) (map (*2) [2..10])) 

sum $ filter (> 10) $ map (*2) [2..10]

http://learnyouahaskell.com/higher-order-functions

$ Right Associative Examples
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But apart from getting rid of parentheses, 

$ means that function application 

can be treated just like another function. 

map function application over a list of functions.

map ($ 3) [(4+), (10*), (^2), sqrt]  

[(4+ $ 3), (10* $ 3), (^2 $ 3), sqrt $ 3]  

[7.0, 30.0, 9.0, 1.7320508075688772]  

http://learnyouahaskell.com/higher-order-functions

$ Map Function Application Examples
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const x _ = x

Prelude> const 3 333

3

Prelude> const 3 99999

3

useful for passing to higher-order functions 

when you don't need all their flexibility. 

For example, the monadic sequence operator >> 

can be defined in terms of the monadic bind operator as

x >> y = x >>= const y

(>>) = (. const) . (>>=)

https://stackoverflow.com/questions/7402528/whats-the-point-of-const-in-the-haskell-prelude

const function
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Prelude> let x = read "True"

Prelude> :t x

x :: Read a => a

x doesn't have a concrete type. 

x is sort of an expression 

that can provide a value of a concrete type, 

when we ask for it. 

ask x to be an Int or a Bool or anything

Prelude> x :: Bool

True

https://stackoverflow.com/questions/7402528/whats-the-point-of-const-in-the-haskell-prelude
http://zvon.org/other/haskell/Outputprelude/read_f.html

read function

Input: read "12"::Int

Output: 12

Input: read "12"::Double

Output: 12.0

Input: read "1.22"::Double

Output: 1.22

https://stackoverflow.com/questions/7402528/whats-the-point-of-const-in-the-haskell-prelude
http://zvon.org/other/haskell/Outputprelude/read_f.html
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replicate Int -> a -> [a]
creates a list of length given by the first argument 
and the items having value of the second argument 

take Int -> [a] -> [a]
creates a list, the first argument determines, 
how many items should be taken from the list passed 
as the second argument 

repeat a -> [a]
it creates an infinite list where all items are the first argument

cycle [a] -> [a]
it creates a circular list from a finite one 

Iterate  (a -> a) -> a -> [a]
creates an infinite list where the first item is calculated 
by applying the function on the second argument, the second item 
by applying the function on the previous result and so on. 

http://zvon.org/other/haskell/Outputprelude/cycle_f.html

replicate, take, repeat, cycle, iterate 
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Input: replicate 3 5

Output: [5,5,5]

Input: replicate 4 "aa"

Output: ["aa","aa","aa","aa"]

Input: replicate 5 'a'

Output: "aaaaa"

http://zvon.org/other/haskell/Outputprelude/cycle_f.html

replicate, take, repeat, cycle, iterate examples

Input: take 5 [1,2,3,4,5,6,7]
Output: [1,2,3,4,5]

Input: take 5 [1,2]
Output: [1,2]

Input: take 0 [1,2,3,4,5,6,7]
Output: []

Input: take 5 (repeat 3)
Output: [3,3,3,3,3]

Input: take 7 (iterate (2*) 1)
Output: [1,2,4,8,16,32,64]

Input: take 10 (cycle [1,2,3])
Output: [1,2,3,1,2,3,1,2,3,1]

Input: take 4 (repeat 3)
Output: [3,3,3,3]

Input: take 6 (repeat 'A')
Output: "AAAAAA"

Input: take 5 (repeat "A")
Output: ["A","A","A","A","A"]

Input: take 10 (cycle [1,2,3])
Output: [1,2,3,1,2,3,1,2,3,1]

Input: take 10 (cycle "ABC")
Output: "ABCABCABCA"
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flip

flip         :: (a -> b -> c) -> b -> a -> c

flip f x y   =  f y x

flip f takes its (first) two arguments in the reverse order of f. 

https://www.haskell.org/hoogle/?hoogle=flip
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flip

https://stackoverflow.com/questions/14397128/how-does-the-flip-function-work

flip     :: (a -> b -> c) -> b -> a -> c

flip f   =  g

  where

    g a b = f b a

flip     :: (a -> b -> c) -> b -> a -> c

flip f   =  g

  where

    g x y = f y x

flip         :: (a -> b -> c) -> b -> a -> c

flip f x y   =  f y x

flip         :: (a -> b -> c) -> b -> a -> c

flip f x y   =  g

  where

    g = f y x

flip         :: (a -> b -> c) -> b -> a -> c

flip f x y   =  g x y

  where

    g a b = f b a

flip f x y   =  g x y

flip f x   =  g x

flip f   =  g
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flip

flip         :: (a -> b -> c) -> b -> a -> c

flip f x y   =  f y x

flip f takes its (first) two arguments 

in the reverse order of f. 

f             :: (a -> b -> c)

flip f       :: (b -> a -> c)

https://www.haskell.org/hoogle/?hoogle=flip

c
a
b

c
b
a
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flip implementation

https://stackoverflow.com/questions/14397128/how-does-the-flip-function-work

flip     :: (a -> b -> c) -> b -> a -> c

flip f   =  g

  where

    g a b = f b a

flip     :: (a -> b -> c) -> b -> a -> c

flip f   =  g

  where

    g x y = f y x

flip         :: (a -> b -> c) -> b -> a -> c

flip f x y   =  f y x

flip         :: (a -> b -> c) -> b -> a -> c

flip f x y   =  g

  where

    g = f y x

flip         :: (a -> b -> c) -> b -> a -> c

flip f x y   =  g x y

  where

    g a b = f b a

flip f x y   =  g x y

flip f x   =  g x

flip f   =  g
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