
Young Won Lim
9/4/18

Background – Type Classes (1B)



Young Won Lim
9/4/18

 Copyright (c)  2016  - 2017 Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com


Background (1B)
Type Classes 3 Young Won Lim

9/4/18

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids


Background (1B)
Type Classes 4 Young Won Lim

9/4/18

Polymorphism in Haskell

The polymorphism features of Haskell

● Purity -- side effects

● higher order functions -- function passing and returning 

● parameterized algebraic data types

● typeclasses 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids



Background (1B)
Type Classes 5 Young Won Lim

9/4/18

Typeclasses 

Types in Haskell 

● no explicit hierarchy of types

● similar types can act like each other 

● connect such similar types with the appropriate typeclasses

Example:

An Int can act like many things

● like an equatable thing, Eq

● like an ordered thing, Ord

● like an enumerable thing, etc. Enum

http://learnyouahaskell.com/functors-applicative-functors-and-monoids



Background (1B)
Type Classes 6 Young Won Lim

9/4/18

Open Typeclasses

Typeclasses are open: 

● can define our own data type, 

● can think about what it can act like 

● can connect it with the typeclasses 

that define its behaviors. 

typeclasses define behaviors 

that is very general and abstract 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

action 

behavior

define behaviors 

operation of a functions



Background (1B)
Type Classes 7 Young Won Lim

9/4/18

Defining behavior

defining behaviors : 

the type declarations of functions

general and abstract :

A typeclass defintion include 

the type declarations of functions, 

which give a lot of informations 

about functions 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

define behaviors 

operation of a functions

define behavior

connect



Background (1B)
Type Classes 8 Young Won Lim

9/4/18

Examples of defining behavior

Example:

typeclasses that define operations 

to see if two things are equal 

to compare two things by some ordering. 

● very abstract and elegant behaviors, 

● not anything very special 

because these operations are most common

http://learnyouahaskell.com/functors-applicative-functors-and-monoids



Background (1B)
Type Classes 9 Young Won Lim

9/4/18

Typeclasses and Instances

typeclasses are like interfaces

defines some behavior 
– comparing for equality 
– comparing for ordering 
– enumeration

instances of that typeclass
 types possessing such behavior 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

    a function definition

       (==) :: a -> a -> Bool - a type declaration 

        x == y = not (x /= y)  

    a function type declaration

       (==) :: a -> a -> Bool - a type declaration 

     A function definition can be overloaded 

such behavior is defined by 
● function definition 
● function type declaration only 



Background (1B)
Type Classes 10 Young Won Lim

9/4/18

Typeclasses and Type

typeclasses are like interfaces

defines some behavior 
– comparing for equality 
– comparing for ordering 
– enumeration

instances of that typeclass
 types possessing such behavior 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a type is an instance of a typeclass implies

the function types declared by the typeclass 
are defined (implemented) in the instance
so that the functions can be used,
which the typeclass defines with that type

class AAA bbb where  
        func1 :: a -> b -> c
        func2 :: b -> c -> a

instance AAA BBB where  
        func1 definition
 func2 definition



Background (1B)
Type Classes 11 Young Won Lim

9/4/18

Instance Example

the Eq typeclass 

defines the functions == and /=

a type Car 

comparing two cars c1 and c2 with the equality function ==

The Car type is an instance of Eq typeclass

Instances : various types 

Typeclass : a group or a class of these similar types

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a type Car

a type Bag

a type Phone

Eq typeclass

functions
== and /=

instances



Background (1B)
Type Classes 12 Young Won Lim

9/4/18

Instance of a typeclass (1)

data State a = State { runState :: Int -> (a, Int) } 

instance Show (State a) where not working!

instance (Show a) => Show (State a) where

     show (State f) = show [show i ++ " => " ++ show (f i) | i <- [0..3]]

getState = State (\c -> (c, c))

putState count = State (\_ -> ((), count))

https://stackoverflow.com/questions/7966956/instance-show-state-where-doesnt-compile

(State a) is an instance of Show

State { runState = (\c -> (c, c)) }

State { runState = (\_ -> ((), c)) }

a should be an instance of Show



Background (1B)
Type Classes 13 Young Won Lim

9/4/18

Instance of a typeclass (2)

data State a = State { runState :: Int -> (a, Int) } 

instance (Show a) => Show (State a) where
     show (State f) = show [show i ++ " => " ++ show (f i) | i <- [0..3]]

getState = State (\c -> (c, c))
putState count = State (\_ -> ((), count))

show (State (\c -> (c, c)))   show (State f)

0 => show (f 0), 1 => show (f, 1), 2 => show (f, 2), 3 => show (f, 3)
  (0,0), (1, 1), (2, 2), (3, 3)

*Main> getState
["0 => (0,0)","1 => (1,1)","2 => (2,2)","3 => (3,3)"]

*Main> putState 1
["0 => ((),1)","1 => ((),1)","2 => ((),1)","3 => ((),1)"]

https://stackoverflow.com/questions/7966956/instance-show-state-where-doesnt-compile

f  (\c -> (c, c))



Background (1B)
Type Classes 14 Young Won Lim

9/4/18

TrafficLight Type Example (2)

    class Show  a where  
        show :: a  -> String - a type declaration 
        * * * 

 

    data TrafficLight = Red | Yellow | Green  

    instance Show TrafficLight where  
    show Red = "Red light"  
    show Yellow = "Yellow light"  
    show Green = "Green light"  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

ghci> [Red, Yellow, Green]  
[Red light,Yellow light,Green light]  

a type 
TrafficLight

Eq typeclass

Show typeclass

Instance 



Background (1B)
Type Classes 15 Young Won Lim

9/4/18

Class Constraints

    class (Eq a) => Num a where  
       ...    

    class Num a where  
       ...    

class constraint on a class declaration

an instance of Eq 
before being an instance of Num

the required function bodies can be defined in  
● the class declaration
● an instance declarations, 

we can safely use == because a is a part of Eq 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a

Eq 

Num

instance 

(Eq a) =>

typeclass

typeclass

Num : a subclass of Eq 



Background (1B)
Type Classes 16 Young Won Lim

9/4/18

Class Constraints : class & instance declarations

class constraints in class declarations 

to make a typeclass a subclass of another typeclass 

    class (Eq a) => Num a where 

…  

class constraints in instance declarations 

to express requirements about the contents of some type.

    instance (Eq x, Eq y) => Eq (Pair x y) where

        Pair x0 y0 == Pair x1 y1 = x0 == x1 && y0 == y1

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://cmsc-16100.cs.uchicago.edu/2016/Lectures/07-type-classes.php

subclass

requirements



Background (1B)
Type Classes 17 Young Won Lim

9/4/18

Class constraints in instance declaration examples  

    instance (Eq m) => Eq (Maybe m) where  

        Just x     ==  Just y = x == y  

        Nothing  ==  Nothing = True  

          _ == _ = False  

    instance (Eq x, Eq y) => Eq (Pair x y) where

        Pair x0 y0 == Pair x1 y1 = x0 == x1 && y0 == y1

            

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Eq x Eq yEq (Pair x y)

Eq m

   Derived instance 



Background (1B)
Type Classes 18 Young Won Lim

9/4/18

Class constraints and Overloading 

class Eq a where 

  (==)                  :: a -> a -> Bool

instance Eq Integer where 

  x == y                =  x `integerEq` y

instance Eq Float where

  x == y                =  x `floatEq` y

instance (Eq a) => Eq (Tree a) where 

  Leaf a            == Leaf b          =  a == b

  (Branch l1 r1) == (Branch l2 r2)  =  (l1==l2) && (r1==r2)

  _              == _               =  False

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

== of Eq a== of Eq (Tree a)



Background (1B)
Type Classes 19 Young Won Lim

9/4/18

A Concrete Type and a Type Constructor 

a : a concrete type 

Maybe : not a concrete type 
: a type constructor that takes one parameter 
  produces a concrete type. 

Maybe a : a concrete type 

 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass



Background (1B)
Type Classes 20 Young Won Lim

9/4/18

Instance of Eq 

    data TrafficLight = Red | Yellow | Green  

    class Eq a where  

        (==) :: a -> a -> Bool  

        (/=) :: a -> a -> Bool  

        x == y = not (x /= y)  

        x /= y = not (x == y)  

    instance Eq TrafficLight where  

        Red == Red = True  

        Green == Green = True  

        Yellow == Yellow = True  

                   _ == _ = False  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

to define our own type (defining a new data type)

allowed values are Red, Yellow, and Green

no class (type)  instances

class : 

defining new typeclasses 

instance : 

making types instances of a typeclasses



Background (1B)
Type Classes 21 Young Won Lim

9/4/18

Instance of Show 

    instance Show TrafficLight where  

        show Red = "Red light"  

        show Yellow = "Yellow light"  

        show Green = "Green light"  

    ghci> Red == Red  ◄ instance Eq TrafficLight   

    True  

    ghci> Red == Yellow ◄ instance Eq TrafficLight    

    False  

    ghci> Red `elem` [Red, Yellow, Green]  ◄ instance Eq TrafficLight    

    True  

    ghci> [Red, Yellow, Green]  ◄ instance Show TrafficLight   

    [Red light,Yellow light,Green light]  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses



Background (1B)
Type Classes 22 Young Won Lim

9/4/18

Instance Maybe m 

    instance Eq Maybe where  Maybe is not a concrete type

        ...    Maybe m is a concrete type

    instance Eq (Maybe m) where  

       Just x == Just y = x == y  

       Nothing == Nothing = True  

       _ == _ = False  

    instance (Eq m) => Eq (Maybe m) where  

        Just x == Just y = x == y  

        Nothing == Nothing = True  

        _ == _ = False  

            

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

all types of the form Maybe m 

to be part of the Eq typeclass, 

but only those types where the m 
(what's contained inside the Maybe) 

is also a part of Eq. 



Background (1B)
Type Classes 23 Young Won Lim

9/4/18

Eq, Ord, Show classes

Since equality tests between values are frequently used

most of your own data types should be members of Eq. 

Prelude classes

● Eq

● Ord

● Show 

for the convenience, Haskell has a way to declare 

such "obvious" instance definitions 

using the keyword deriving. 

https://en.wikibooks.org/wiki/Haskell/Classes_and_types



Background (1B)
Type Classes 24 Young Won Lim

9/4/18

Deriving instance example

data Foo = Foo {x :: Integer, str :: String}

    deriving (Eq, Ord, Show)

This makes Foo an instance of Eq 

ith an automatically generated 

definition of == 

also an instance of Ord and Show

deriving (Eq, Ord, Show)

https://en.wikibooks.org/wiki/Haskell/Classes_and_types

data Foo = Foo {x :: Integer, str :: String}

 

instance Eq Foo where

   (Foo x1 str1) == (Foo x2 str2) 

= (x1 == x2) && (str1 == str2)

*Main> Foo 3 "orange" == Foo 6 "apple"

False

*Main> Foo 3 "orange" /= Foo 6 "apple"

True



Background (1B)
Type Classes 25 Young Won Lim

9/4/18

Deriving instance pros and cons

The types of elements inside the data type 

must also be instances of the class you are deriving.

Deriving instances 

● synthesis of functions for a limited set of predefined classes 

● against the general Haskell philosophy :

"built in things are not special", 

● induces compact codes

● often reduces errors in coding

(an example: an instance of Eq such that x == y 

would not be equal to y == x would be flat out wrong). 

https://en.wikibooks.org/wiki/Haskell/Classes_and_types



Background (1B)
Type Classes 26 Young Won Lim

9/4/18

Derivable Classes

Eq 

    Equality operators == and /=

Ord 

    Comparison operators < <= > >=; min, max, and compare.

Enum 

    For enumerations only. Allows the use of list syntax such as [Blue .. Green].

Bounded 

    Also for enumerations, but can also be used on types that have only one constructor. 

    Provides minBound and maxBound as the lowest and highest values that the type can take.

Show 

    Defines the function show, which converts a value into a string, and other related functions.

Read 

    Defines the function read, which parses a string into a value of the type, 

    and other related functions. 

https://en.wikibooks.org/wiki/Haskell/Classes_and_types



Background (1B)
Type Classes 27 Young Won Lim

9/4/18

Functors, Applicatives, Monads

functors: you apply a function to a wrapped value 

applicatives: you apply a wrapped function to a wrapped value

monads: you apply a function that returns a wrapped value, to a wrapped value

functors: using fmap or <$>

applicatives: using <*> or liftA

monads: using >>= or liftM

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell



Background (1B)
Type Classes 28 Young Won Lim

9/4/18

Functors

Functors use the fmap or <$> functions

    fmap :: Functor f => (a -> b) -> f a -> f b

    <$>   :: Functor f => (a -> b) -> f a -> f b

This takes a function and applies to to the wrapped elements

fmap (\x -> x + 1) (Just 1)   -- Applies (+1) to the inner value, returning (Just 2)

fmap (\x -> x + 1) Nothing    -- Applies (+1) to an empty wrapper, returning Nothing

fmap (\x -> x + 1) [1, 2, 3]  -- Applies (+1) to all inner values, returning [2, 3, 4]

(\x -> x + 1) <$> [1, 2, 3]  -- Same as above [2, 3, 4]

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell



Background (1B)
Type Classes 29 Young Won Lim

9/4/18

Applicatives

Applicatives use the <*> function:

    <*> :: Applicative f => f (a -> b) -> f a -> f b

This takes a wrapped function and applies it to the wrapped elements

(Just (\x -> x + 1)) <*> (Just 1) -- Returns (Just 2)

(Just (\x -> x + 1)) <*> Nothing -- Returns Nothing

Nothing <*> (Just 1)              -- Returns Nothing

[(*2), (*4)] <*> [1, 2]           -- Returns [2, 4, 4, 8]

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell



Background (1B)
Type Classes 30 Young Won Lim

9/4/18

Monads – return 

There are two relevant functions in the Monad typeclass:

    return :: Monad m => a -> m a

    (>>=) :: Monad m => m a -> (a -> m b) -> m b 

The return function takes a raw, unwrapped value, 

and wraps it up in the desired monadic type.

makeJust :: a -> Maybe a

makeJust x = return x

let foo = makeJust 10 -- returns (Just 10)

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell



Background (1B)
Type Classes 31 Young Won Lim

9/4/18

Monads – bind 

The bind function lets you 

temporarily unwrap the inner elements of a Monad 

and pass them to a function that performs some action 

that wraps them back UP in the same monad. 

This can be used with the return function in trivial cases:

[1, 2, 3, 4] >>= (\x -> return (x + 1)) -- Returns [2, 3, 4, 5]

(Just 1) >>= (\x -> return (x + 1))      -- Returns (Just 2)

Nothing >>= (\x -> return (x + 1))       -- Returns Nothing

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell



Background (1B)
Type Classes 32 Young Won Lim

9/4/18

Monads – a binding operand

functions to chain together that don't require to use return. 

    getLine :: IO String -- return String type value as a result

    putStrLn :: String -> IO ()

function call examples

getLine >>= (\x -> putStrLn x) -- gets a line from IO and prints it to the console

getLine >>= putStrLn -- with currying, this is the same as above

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell



Background (1B)
Type Classes 33 Young Won Lim

9/4/18

Monads – a chain of functions 

functions to chain together that don't require to use return. 

    getLine :: IO String -- return String type value as a result

    putStrLn :: String -> IO ()

    read :: Read a => String -> a 

    show :: Show a => a -> String 

-- composite function examples 

-- reads a line from IO, converts to a number, adds 10 and prints it

getLine >>= (return . read) >>= (return . (+10)) >>= putStrLn . show

getLine >>= (return . read) >>= (return . (+10)) >>= putStrLn . show

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell

String a a String -> ()



Background (1B)
Type Classes 34 Young Won Lim

9/4/18

Promises and Mediators

the concept of promises (particularly in Javascript) 

A promise is an object that acts as a placeholder 

for the result value of an asynchronous, background computation, 

like fetching some data from a remote service.  

it serves as a mediator 

between the asynchronous computation 

and functions that need to operate on its anticipated result.

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell

Act

Behavior

Operation

Define

Connect

P1 P2

fifo

promise



Background (1B)
Type Classes 35 Young Won Lim

9/4/18

Map a function over a promise

A mediator allows us to say 

what function should apply 

to the result of a background task, 

before that task has completed. 

When you map a function over a promise, 

the value that your function should apply to 

may not have been computed yet 

and in fact, if there is an error somewhere

it may never be computed.

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell

P1 P2

promise

function

map



Background (1B)
Type Classes 36 Young Won Lim

9/4/18

Chaining a function onto a promise

Promise libraries usually support 

a functorial/monadic API 

where you can chain a function onto a promise, 

which produces another promise 

that produces the result of applying that function 

to the original promise's result.

the value of the functor/monad interface

 

Promises allow you to say 

what function should apply 

to the result of a background task, 

before that task has completed. 

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell

P1 P2

promise

function

P2

promise

map

function

map



Background (1B)
Type Classes 37 Young Won Lim

9/4/18

Interfaces

think functor/applicative/monad 

as interfaces for mediator objects 

that sit in between functions and arguments, 

and connect them indirectly according to some policy. 

The simplest way to use a function is 

just to call it with some arguments; 

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell

when and how many times 

the function will be called

what to do with its result.

P1 P2

promise

controls

function

map

First-class functions

A higher-order function is a function 

that takes other functions as arguments 

or returns a function as result. 



Background (1B)
Type Classes 38 Young Won Lim

9/4/18

Interfaces with first-class functions

if you have first-class functions, 

you have other, indirect options—

you can supply the function to a mediator object 

that will control  when and how many times the 

function will be called, and what to do with its result. 

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell

when and how many times 

the function will be called

what to do with its result.

P1 P2

promise

controls

function

map

First-class functions

A higher-order function is a function 

that takes other functions as arguments 

or returns a function as result. 



Background (1B)
Type Classes 39 Young Won Lim

9/4/18

Promises and Mediators

    Promises call the functions supplied to them 

when the result of some background task is completed

    The results of those functions are then handed over 

to other promises that are waiting for them.

https://softwareengineering.stackexchange.com/questions/303472/what-is-the-purpose-of-wrapped-values-in-haskell

P1 P2

promise

function

map

call functions that 
was received as 
arguments

hand over the results



Background (1B)
Type Classes 40 Young Won Lim

9/4/18

General Monad  - MonadPlus  

Haskell's Control.Monad module defines a typeclass, MonadPlus, 

that enables abstract the common pattern eliminating case expressions.

class Monad m => MonadPlus m where

   mzero :: m a

   mplus :: m a -> m a -> m a

instance MonadPlus [] where

   mzero = []

   mplus = (++)

instance MonadPlus Maybe where

   mzero = nothing

   nothing `mplus` ys  = ys

   xs          `mplus` _    = xs

http://book.realworldhaskell.org/read/programming-with-monads.html

class  (Monad m) => MonadPlus m  where



Background (1B)
Type Classes 41 Young Won Lim

9/4/18

General Monad  - MonadPlus  Laws

 The class MonadPlus is used for monads that have a zero element and a plus operation:

class  (Monad m) => MonadPlus m  where

    mzero             :: m a

    mplus             :: m a -> m a -> m a

m >>= \x -> mzero = mzero

mzero >>= m = mzero

m `mplus` mplus = m

mplus `mplus` m = m

The mplus operator is ordinary list concatenation in the list monad.

http://book.realworldhaskell.org/read/programming-with-monads.html

The zero element laws:

The laws governing the mplus operator

For lists, the zero value is [], the empty list. 

The I/O monad has no zero element and 

is not a member of this class.



Background (1B)
Type Classes 42 Young Won Lim

9/4/18

Functional Dependency (fundep)

class Mult a b c | a b -> c where

  (*) :: a -> b -> c

 | a b -> c means 

c is uniquely determined from a and b

fundeps are not standard Haskell 98. 

(Nor are multi-parameter type classes, for that matter.) 

They are, however, supported at least in GHC and Hugs 

and will almost certainly end up in Haskell'. 

class Mult a b c where

  (*) :: a -> b -> c

https://wiki.haskell.org/Functional_dependencies



Background (1B)
Type Classes 43 Young Won Lim

9/4/18

Functional Dependency – a type inferencer 

In a multiparameter typeclass, by default, 

the type variables are considered independently. 

The type inferencer has to determine a and b independently, 

then check to see if the instance exists. 

class Foo a b

Functional dependencies narrow down possible choices. effective, useful

class Foo a b | a -> b

Look, if you determine what a is, then there is a unique b 

so that Foo a b exists, so don't bother trying to infer b, 

just go look up the instance and typecheck that.

https://stackoverflow.com/questions/20040224/functional-dependencies-in-haskell



Background (1B)
Type Classes 44 Young Won Lim

9/4/18

Functional Dependency – return type polymorphism 

Fundep is useful with return type polymorphism

class Foo a b c where

  bar :: a -> b -> c

there's no way to infer

  bar (bar "foo" 'c') 1

Because we have no way of determining c of a -> b -> c.

 

Even if we only wrote one instance for String and Char, 

we have to assume that someone might/will come along 

and add another instance later on. 

https://stackoverflow.com/questions/20040224/functional-dependencies-in-haskell



Background (1B)
Type Classes 45 Young Won Lim

9/4/18

Functional Dependency – determining the return type 

With fundeps we don’t have to specify the return type, 

which is annoying. 

And now it's easy to see that the return type c 

of bar "foo" 'c' is unique and thus inferable.

class Foo a b c | a b -> c where

  bar :: a -> b -> c

https://stackoverflow.com/questions/20040224/functional-dependencies-in-haskell



Background (1B)
Type Classes 46 Young Won Lim

9/4/18

Type constructors take other types as parameters 

to eventually produce concrete types. – like a function

type constructors can be partially applied  just like functions can 

Either String is a type that takes one type 

and produces a concrete type, 

like Either String Int

by using type declarations 

formally defining how types are applied to type constructors, 

formally defining how values are applied to functions 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Type Constructors with parameters



Background (1B)
Type Classes 47 Young Won Lim

9/4/18

values like 

3 – Int 

"YEAH"  – String

takeWhile – a function value 

each have their own type. 

types are little labels that values carry 

so that we can reason about the values. 

types have their own another little labels, called kinds. 

A kind can be considered as the type of a type. 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Kind of a type



Background (1B)
Type Classes 48 Young Won Lim

9/4/18

To examine the kind of a type 

using the :k command in GHCI.

    ghci> :k Int  

    Int :: *  

A * means that the type is a concrete type. 

A concrete type is a type that doesn't take any type parameters 

and values can only have types that are concrete types. 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Examining the kind of a type 



Background (1B)
Type Classes 49 Young Won Lim

9/4/18

    ghci> :k Maybe  

    Maybe :: * -> *  

The Maybe type constructor 

takes one concrete type (like Int) 

and returns a concrete type (like Maybe Int)

Int -> Int represents a function 

taking an Int and returning an Int, 

* -> * represents a type constructor 

taking an concrete type and returning a concrete type 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Kind of a type constructor



Background (1B)
Type Classes 50 Young Won Lim

9/4/18

apply the type parameter to Maybe 

    ghci> :k Maybe Int  

    Maybe Int :: *  

the type parameter Int is applied to Maybe 

The kind of  Maybe Int is a concrete type 

    :t isUpper :k isUpper

    Char -> Bool * 

   :t isUpper 'A'  (True) :k isUpper 'A'

   Bool *

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Kind of a type constructor applied with a type parameter



Young Won Lim
9/4/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2]  https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

