
Young Won Lim
9/4/18

Background – Constructors (1A)

Young Won Lim
9/4/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Background (1A)
Constructors 3 Young Won Lim

9/4/18

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Background (1A)
Constructors 4 Young Won Lim

9/4/18

Data Constructor

data Color = Red | Green | Blue

Type Data

Constructor Constructors

values

Red is a constructor that contains a value of the type Color.

Green is a constructor that contains a value of the type Color.

Blue is a constructor that contains a value of the type Color.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Background (1A)
Constructors 5 Young Won Lim

9/4/18

Variable binding examples

data Color = Red | Green | Blue

 deriving (Eq, Ord, Show)

pr :: Color -> String

pr x

 | x == Red = "Red"

 | x == Green = "Green"

 | x == Blue = "Blue"

 | otherwise = "Not a Color"

*Main> pr Red x ← Red

"Red"

*Main> pr Green x ← Green

"Green"

*Main> pr Blue x ← Blue

"Blue"

Prelude> data Color = Red | Green | Blue

 deriving(Eq, Ord, Show)

Prelude> let x = Red x ← Red

Prelude> let y = Green x ← Green

Prelude> let z = Blue x ← Blue

Prelude> show(x)

"Red"

Prelude> show (y)

"Green"

Prelude> show(z)

"Blue"

Background (1A)
Constructors 6 Young Won Lim

9/4/18

Data Constructor with Parameters

data Color = RGB Int Int Int

Type Data

Constructor Constructors

type (a function returning a value)

RGB is not a value but a function taking three Int’s and returning a value

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Background (1A)
Constructors 7 Young Won Lim

9/4/18

Data Constructor with Parameters – type declaration

data Color = RGB Int Int Int

RGB :: Int -> Int -> Int -> Color

RGB is a data constructor that is a function

taking three Int values as its arguments,

and then uses them to construct a new value.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

a function type declaration

Background (1A)
Constructors 8 Young Won Lim

9/4/18

Type Constructors and Data Constructors

A type constructor

● a "function" that takes 0 or more types

● returns a new type.

Type constructors with parameters

allows slight variations in types

A data constructor

● a "function" that takes 0 or more values

● returns a new value.

Data constructors with parameters

allows slight variations in values

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

RGB 12 92 27 → #0c5c1b

RGB 255 0 0

RGB 0 255 0

RGB 0 0 255

returns a value of Color type

type SBTree = BTree String

type BBTree = BTree Bool

BTree String returns a new type

BTree Bool returns a new type

Background (1A)
Constructors 9 Young Won Lim

9/4/18

Type Constructor

Consider a binary tree to store Strings

data SBTree = Leaf String | Branch String SBTree SBTree

Type Data

Constructor Constructors

type (functions returning a value)

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Background (1A)
Constructors 10 Young Won Lim

9/4/18

Data Constructors – type declarations

Consider a binary tree to store Strings

data SBTree = Leaf String | Branch String SBTree SBTree

SBTree Leaf Branch

Type Data Data

Constructor Constructor Constructor

Leaf :: String -> SBTree

Branch :: String -> SBTree -> SBTree -> SBTree

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Background (1A)
Constructors 11 Young Won Lim

9/4/18

Similar Type Constructors

Consider a binary tree to store Strings

data SBTree = Leaf String | Branch String SBTree SBTree

Consider a binary tree to store Bool

data BBTree = Leaf Bool | Branch Bool BBTree BBTree

Consider a binary tree to store a parameter type a

data BTree a = Leaf a | Branch a (BTree a) (BTree a)

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Background (1A)
Constructors 12 Young Won Lim

9/4/18

Type Constructor with a Parameter

data SBTree = Leaf String | Branch String SBTree SBTree

data BBTree = Leaf Bool | Branch Bool BBTree BBTree

data BTree a = Leaf a | Branch a (BTree a) (BTree a)

a type variable a

as a parameter to the type constructor.

BTree has become a function.

It takes a type as its argument

and it returns a new type.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Background (1A)
Constructors 13 Young Won Lim

9/4/18

() : the unit type

() is both a type and a value.

() is a special type, pronounced “unit”, the unit type ()

has one value (), sometimes pronounced “void” the void value ()

the unit type has only one value which is called unit.

data () = ()

() :: ()

It is the same as the void type void in Java or C/C++.

https://stackoverflow.com/questions/20380465/what-do-parentheses-used-on-their-own-mean

Value :: Type

data Type :: Expression Immutable Variable :: Type

Background (1A)
Constructors 14 Young Won Lim

9/4/18

Unit Type

a unit type is a type that allows only one value (and thus can hold no information).

It is the same as the void type void in Java or C/C++.

:t

Expression :: Type

data Unit = Unit

Prelude> :t Unit

Unit :: Unit

Prelude> :t ()

() :: ()

https://stackoverflow.com/questions/20380465/what-do-parentheses-used-on-their-own-mean

data () = ()

Prelude> :t ()

() :: ()

Background (1A)
Constructors 15 Young Won Lim

9/4/18

Never ending expressions

expressions : the entities on which calculations are performed 1+2

values : the entities that result from a calculation － i.e., the answers 3

an expression has only a never-ending sequence of calculations

x = x + 1

x

 ⇒ x + 1

 ⇒ (x + 1) + 1

 ⇒ ((x + 1) + 1) + 1

 ⇒ (((x + 1) + 1) + 1) + 1

 …

each type has its own version of ⊥.

https://www.reddit.com/r/haskell/comments/5h4o3u/a_beginnerfriendly_explanation_of_bottom_taken/

this expression is said to not terminate, or diverge.

the symbol , pronounced ⊥ bottom,

is used to denote the value of the expression.

Background (1A)
Constructors 16 Young Won Lim

9/4/18

Bottom definition

The term bottom refers to a computation

that never completes successfully.

that fails due to some kind of error

that just goes into an infinite loop

(without returning any data).

The mathematical symbol for bottom is ' '⊥

In plain ASCII, '_|_

bottom is

a member value of any type Int, Float … ,

a member value of even the trivial type ()

a member value of the equivalent simple type:

data Unary = Unary

https://wiki.haskell.org/Bottom

Background (1A)
Constructors 17 Young Won Lim

9/4/18

Bottom Expressions

bottom can be expressed in Haskell thus:

bottom = bottom -- bottom yielding expression (infinite)

bottom = error "Non-terminating computation!" -- function

the type of bottom is arbitrary,

and defaults to the most general type:

bottom :: a

undefined = error "Prelude.undefined" -- the Prelude function

undefined | False = undefined -- the Gofer function

https://wiki.haskell.org/Bottom

f n | n < 3 = -1

f n | n < 5 = 1

f n = 2

Background (1A)
Constructors 18 Young Won Lim

9/4/18

The Value Undefined

undefined is an example of a bottom value (denoted) ⊥

that represents any undefined, stuck or partial state in the program.

Many different forms of bottom exist:

non-terminating loops, exceptions, pattern match failures

basically any state in the program that is undefined in some sense.

The value undefined :: a is a canonical example of

a value that puts the program in an undefined state.

https://stackoverflow.com/questions/3962939/whats-the-difference-between-undefined-in-haskell-and-null-in-java

Background (1A)
Constructors 19 Young Won Lim

9/4/18

Undefined examples

undefined itself isn't particularly special -- its not wired in --

and you can implement Haskell's undefined

using any bottom-yielding expression.

E.g. this is a valid implementation of undefined:

undefined = undefined

exiting immediately (the old Gofer compiler used this definition):

undefined | False = undefined

The primary property of bottom is

that if an expression evaluates to bottom,

your entire program will evaluate to bottom:

the program is in an undefined state.

https://stackoverflow.com/questions/3962939/whats-the-difference-between-undefined-in-haskell-and-null-in-java

Background (1A)
Constructors 20 Young Won Lim

9/4/18

Undefined usages

As bottom is an inhabitant of every type

bottoms can be used

wherever a value of every type would be.

useful in a number of circumstances:

-- for leaving a part in your program to come back to later:

foo = undefined

-- when dispatching to a type class instance:

print (sizeOf (undefined :: Int))

-- when using laziness:

print (head (1 : undefined))

https://wiki.haskell.org/Bottom

:set +m --multiline

let foo=undefined

foo

*** Exception: Prelude.undefined

import Foreign.Storable

print(sizeOf(undefined::Int))

8

let i = 10

let i = 10 :: Int

print(sizeOf(i))

8

print (head (1 : undefined))

1

print (head (1 : [1, 2, 3]))

1

print (head (undefined : [1, 2, 3]))

*** Exception: Prelude.undefined

Background (1A)
Constructors 21 Young Won Lim

9/4/18

data TypeC Tpar … Tpar = ValC type … type | … |

 ValC type … type

The keyword data introduces a new datatype declaration,

● the new type TypeC Tpar … Tpar

● its values ValC type … type | … | ValC type … type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

A new datatype declaration

A new datatype
declaration

datatype

data type

data type = data

Background (1A)
Constructors 22 Young Won Lim

9/4/18

data TypeC Tvar … Tvar = ValC_1 type … type | … |

 ValC_n type … type

TypeC (Type Constructor) is added to the type language

ValC (Value Constructor) is added to the expression language

and its pattern sub-language

must not appear in types

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Type Language and Expression Language

A new datatype
declaration

expression language

Value equivalent

Variable (immutable)

Background (1A)
Constructors 23 Young Won Lim

9/4/18

data TypeC Tvar … Tvar = ValC_1 type … type | … |

 ValC_n type … type

argument types in (Tconst Tvar … Tvar)

can be used as argument types in Vconst type … type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Expression Language : always at the RHS

Background (1A)
Constructors 24 Young Won Lim

9/4/18

data Tree a = Leaf | Node (Tree a) (Tree a)

Tree (Type Constructor)

Leaf or Node (Value Constructor)

data () = ()

() (Type Constructor)

() (Value Constructor)

the type (), often pronounced "Unit"

the value (), sometimes pronounced "void"

the type () containing only one value ()

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Datatype Declaration Examples

data Type = Value

Background (1A)
Constructors 25 Young Won Lim

9/4/18

A type synonym is a new name for an existing type.

Values of different synonyms of the same type

are entirely compatible.

type MyChar = Char

The same as typedef in C

https://wiki.haskell.org/Type_synonym

Type Synonyms

Background (1A)
Constructors 26 Young Won Lim

9/4/18

 type String = [Char] no data constructor

 phoneBook :: [(String,String)]

 type PhoneBook = [(String,String)] no data constructor

 phoneBook :: PhoneBook

 type PhoneNumber = String no data constructor

 type Name = String

 type PhoneBook = [(Name,PhoneNumber)]

 phoneBook :: PhoneBook

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Type Synonym Examples

 phoneBook =

 [("betty","555-2938")

 ,("bonnie","452-2928")

 ,("patsy","493-2928")

 ,("lucille","205-2928")

 ,("wendy","939-8282")

 ,("penny","853-2492")

]

Background (1A)
Constructors 27 Young Won Lim

9/4/18

type Bag a = a -> Int no data constructor

data Gems = Sapphire | Emerald | Diamond deriving (Show)

https://stackoverflow.com/questions/14166641/haskell-type-synonyms-for-functions

Type Synonyms for Functions

a -> Int

a Int

Bag a

a Int
type Bag a = a -> Int

type Bag Int = Int -> Int

type Bag Char = Char -> Int

Background (1A)
Constructors 28 Young Won Lim

9/4/18

type Bag a = a -> Int no data constructor

data Gems = Sapphire | Emerald | Diamond deriving (Show)

myBag :: Bag Gems

emptyBag :: Bag Gems

https://stackoverflow.com/questions/14166641/haskell-type-synonyms-for-functions

Type Synonyms for Functions

emptyBag
Gems Int

myBag
Gems Int

Background (1A)
Constructors 29 Young Won Lim

9/4/18

type Bag a = a -> Int no data constructor

data Gems = Sapphire | Emerald | Diamond deriving (Show)

myBag :: Bag Gems

myBag Sapphire = 3

myBag Diamond = 2

myBag Emerald = 0

emptyBag :: Bag Gems

emptyBag Sapphire = 0

emptyBag Diamond = 0

emptyBag Emerald = 0

https://stackoverflow.com/questions/14166641/haskell-type-synonyms-for-functions

Type Synonyms for Functions

emptyBag
Int

Sapphire

Diamond

Emerald

0

0

0

myBag
Int

Sapphire

Diamond

Emerald

3

2

0

Gems

Gems

Background (1A)
Constructors 30 Young Won Lim

9/4/18

 data Person = Person String String Int Float String String deriving (Show)

 let guy = Person "Buddy" "Finklestein" 43 184.2 "526-2928" "Chocolate"

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Pattern matching function

Type

Const

Data

Const

 firstName :: Person -> String

 firstName (Person firstname _ _ _ _ _) = firstname -- return firstname

Person "Buddy" "Finklestein" 43 184.2 "526-2928" "Chocolate"

firstname = Buddy

Background (1A)
Constructors 31 Young Won Lim

9/4/18

 data Person = Person String String Int Float String String deriving (Show)

 let guy = Person "Buddy" "Finklestein" 43 184.2 "526-2928" "Chocolate"

 firstName :: Person -> String

 firstName (Person firstname _ _ _ _ _) = firstname

 lastName :: Person -> String

 lastName (Person _ lastname _ _ _ _) = lastname

 age :: Person -> Int

 age (Person _ _ age _ _ _) = age

 height :: Person -> Float

 height (Person _ _ _ height _ _) = height

 phoneNumber :: Person -> String

 phoneNumber (Person _ _ _ _ number _) = number

 flavor :: Person -> String

 flavor (Person _ _ _ _ _ flavor) = flavor

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Toward the Record Syntax

 firstName guy ► “Buddy”

 lastName guy ► “John”

 age guy ► 43

 height guy ► 184.2

 phoneNumber guy ► “526-2928”

 flavor guy ► “Chocolate”

pattern matching functions

Background (1A)
Constructors 32 Young Won Lim

9/4/18

 data Person = Person { fName :: String

 , lName :: String

 , age :: Int

 , ht :: Float

 , ph :: String

 , flavor :: String

 } deriving (Show)

 let guy = Person{ fName="Buddy",

lName="John",

age=43,

ht=184.2,

ph=”526-2928”,

flavor=“Orange” }

 http://learnyouahaskell.com/making-our-own-types-and-typeclasses

The Record Syntax

Background (1A)
Constructors 33 Young Won Lim

9/4/18

 data Car = Car String String Int deriving (Show)

 Car "Ford" "Mustang" 1967

 data Car = Car { company :: String, model :: String, year :: Int } deriving (Show)

 Car { company = "Ford", model = "Mustang", year = 1967 }

 Car "Ford" "Mustang" 1967 -- no commas

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

The Record Syntax Example

non-record

record

Background (1A)
Constructors 34 Young Won Lim

9/4/18

 data Person = Person { fName :: String

 , lName :: String

 , age :: Int

 , ht :: Float

 , ph :: String

 , flavor :: String

 } deriving (Show)

 let guy = Person { fName="Buddy", lName="John", age=43, ht=184.2, ph=”526-2928”, flavor=“Orange” }

 fName :: Person -> String

 lName :: Person -> String

 age :: Person -> Int

 ht :: Person -> Float

 ph :: Person -> String

 flavor :: Person -> String

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Accessor Functions

 fName guy ► “Buddy”

 lName guy ► “John”

 age guy ► 43

 ht guy ► 184.2

 ph guy ► “526-2928”

 flavor guy ► “Orange”

accessor functions

Background (1A)
Constructors 35 Young Won Lim

9/4/18

data Configuration = Configuration

 { username :: String

 , localHost :: String

 , currentDir :: String

 , homeDir :: String

 , timeConnected :: Integer

 }

username :: Configuration -> String -- accessor function (automatic)

localHost :: Configuration -> String

-- etc.

changeDir :: Configuration -> String -> Configuration -- update function

changeDir cfg newDir =

 if directoryExists newDir -- make sure the directory exists

 then cfg { currentDir = newDir }

 else error "Directory does not exist"

https://en.wikibooks.org/wiki/Haskell/More_on_datatypes

Update Functions

Background (1A)
Constructors 36 Young Won Lim

9/4/18

Typeclass and Instance Example

 class Eq a where

 (==) :: a -> a -> Bool - a type declaration

 (/=) :: a -> a -> Bool - a type declaration

 x == y = not (x /= y) - a function definition

 x /= y = not (x == y) - a function definition

 data TrafficLight = Red | Yellow | Green

 instance Eq TrafficLight where

 Red == Red = True

 Green == Green = True

 Yellow == Yellow = True

 _ == _ = False

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

ghci> Red == Red

True

ghci> Red == Yellow

False

ghci> Red `elem` [Red, Yellow, Green]

True

Background (1A)
Constructors 37 Young Won Lim

9/4/18

Instance of a typeclass (1)

data State a = State { runState :: Int -> (a, Int) }

instance Show (State a) where not working!

instance (Show a) => Show (State a) where

 show (State f) = show [show i ++ " => " ++ show (f i) | i <- [0..3]]

getState = State (\c -> (c, c))

putState count = State (_ -> ((), count))

https://stackoverflow.com/questions/7966956/instance-show-state-where-doesnt-compile

(State a) is an instance of Show

State { runState = (\c -> (c, c)) }

State { runState = (_ -> ((), c)) }

a should be an instance of Show

Background (1A)
Constructors 38 Young Won Lim

9/4/18

Instance of a typeclass (2)

getState = State (\c -> (c, c))

show (State (\c -> (c, c))) (\c -> (c, c))

show (State f) f

instance (Show a) => Show (State a) where

 show (State f) = show [show i ++ " => " ++ show (f i) | i <- [0..3]]

 i=0 i=1 i=2 i=3

show [0 => show (f 0), 1 => show (f, 1), 2 => show (f, 2), 3 => show (f, 3)]

 (\c -> (c, c)) 0 (\c -> (c, c)) 1 (\c -> (c, c)) 2 (\c -> (c, c)) 3

 (0,0) (1, 1) (2, 2) (3, 3)

https://stackoverflow.com/questions/7966956/instance-show-state-where-doesnt-compile

Background (1A)
Constructors 39 Young Won Lim

9/4/18

Instance of a typeclass (3)

data State a = State { runState :: Int -> (a, Int) }

instance (Show a) => Show (State a) where

 show (State f) = show [show i ++ " => " ++ show (f i) | i <- [0..3]]

getState = State (\c -> (c, c))

putState count = State (_ -> ((), count))

*Main> getState

["0 => (0,0)","1 => (1,1)","2 => (2,2)","3 => (3,3)"]

*Main> putState 1

["0 => ((),1)","1 => ((),1)","2 => ((),1)","3 => ((),1)"]

https://stackoverflow.com/questions/7966956/instance-show-state-where-doesnt-compile

f (\c -> (c, c))

Background (1A)
Constructors 40 Young Won Lim

9/4/18

data newtype

data can only be replaced with newtype

if the type has exactly one value constructor

which can have exactly only one field

It ensures that the trivial wrapping and unwrapping

of the single field is eliminated by the compiler.

(using newtype is faster)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype and data

Background (1A)
Constructors 41 Young Won Lim

9/4/18

data State s a = State { runState :: s -> (s, a) }

type State s a = State { runState :: s -> (s, a) } (X)

newtype State s a = State { runState :: s -> (s, a) }

instance : data(O), type(X), newtype(O)

overhead : data(O), type(X), newtype(X)

data State s a = State { runState :: s -> (s, a) }

type MMM s a = State s a -- existing type

-- exactly same as typedef in C

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

data, type, and newtype

a new type, data constructor

an alias, no data constructor

a new type, data constructor

Background (1A)
Constructors 42 Young Won Lim

9/4/18

simple wrapper types such as State Monad

are usually defined with newtype.

type : type synonyms

newtype State s a = State { runState :: s -> (s, a) }

A single value constructor : State { runState :: s -> (s, a) }

A single field : { runState :: s -> (s, a) }

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Single value constructor with a single field

Background (1A)
Constructors 43 Young Won Lim

9/4/18

one constructor with one field means that

the new type and the type of the field

are in direct correspondence (isomorphic)

state :: (s -> (a, s)) -> State s a

runState :: State s a -> (s -> (a, s))

after the type is checked at compile time,

at run time the two types can be treated identically

https://stackoverflow.com/questions/2649305/why-is-there-data-and-newtype-in-haskell

Single value constructor with a single field

state
(s -> (a, s)) State s a

runState
(s -> (a, s))State s a

(s -> (a, s))

 State s a the new type

the type of the field

State { runState :: s -> (s, a) } one constructor with one field

Background (1A)
Constructors 44 Young Won Lim

9/4/18

to declare different new type class instances for a particular type,

or want to make a type abstract,

● wrap it in a newtype

● then the type checker treats it as a distinct new type

● but identical at runtime without incurring additional overheads.

Isomorphic relation means

that after the type is checked at compile time,

at run time the two types can be treated essentially the same,

without the overhead or indirection

normally associated with a data constructor.

https://stackoverflow.com/questions/2649305/why-is-there-data-and-newtype-in-haskell

Creating a new type class

Background (1A)
Constructors 45 Young Won Lim

9/4/18

https://stackoverflow.com/questions/2649305/why-is-there-data-and-newtype-in-haskell

data, newtype, type

value constructors : number

value constructors : evaluation

value constructors : fields

Compilation Time

Run Time Overhead

Created Type

Type Class Instances

Pattern Matching Evaluation

Usage

many

lazy

many

affected

runtime overhead

a distinct new type

type class instances

at least WHNF

a new data type

only one

strict

only one

affected

none

a distinct new type

type class instances

no evaluation

higher level concept

none

N/A

none

affected

none

a new name

no instance

same as the original

higher level concept

data newtype type

Background (1A)
Constructors 46 Young Won Lim

9/4/18

data - creates new algebraic type with value constructors

● can have several value constructors

● value constructors are lazy

● values can have several fields

● affects both compilation and runtime, have runtime overhead

● created type is a distinct new type

● can have its own type class instances

● when pattern matching against value constructors,

WILL be evaluated at least to weak head normal form (WHNF) *

● used to create new data type

(example: Address { zip :: String, street :: String })

https://stackoverflow.com/questions/2649305/why-is-there-data-and-newtype-in-haskell

data

Background (1A)
Constructors 47 Young Won Lim

9/4/18

newtype - creates new “decorating” type with value constructor

● can have only one value constructor

● value constructor is strict

● value can have only one field

● affects only compilation, no runtime overhead

● created type is a distinct new type

● can have its own type class instances

● when pattern matching against value constructor,

CAN not be evaluated at all *

● used to create higher level concept

based on existing type with distinct set of

supported operations or that is not

● interchangeable with original type

(example: Meter, Cm, Feet is Double)

https://stackoverflow.com/questions/2649305/why-is-there-data-and-newtype-in-haskell

newtype

Background (1A)
Constructors 48 Young Won Lim

9/4/18

type - creates an alternative name (synonym)

 for a type (like typedef in C)

● no value constructors

● no fields

● affects only compilation, no runtime overhead

● no new type is created (only a new name for existing type)

● can NOT have its own type class instances

● when pattern matching against data constructor,

behaves the same as original type

● used to create higher level concept

● based on existing type with the same set of

supported operations (example: String is [Char])

https://stackoverflow.com/questions/2649305/why-is-there-data-and-newtype-in-haskell

type

Background (1A)
Constructors 49 Young Won Lim

9/4/18

newtype Fd = Fd CInt

-- data Fd = Fd CInt would also be valid

-- newtypes can have deriving clauses just like normal types

newtype Identity a = Identity a

 deriving (Eq, Ord, Read, Show)

-- record syntax is still allowed, but only for one field

newtype State s a = State { runState :: s -> (s, a) }

-- this is *not* allowed:

-- newtype Pair a b = Pair { pairFst :: a, pairSnd :: b }

-- but this is allowed (no restriction in data):

data Pair a b = Pair { pairFst :: a, pairSnd :: b } -- two fields

-- and so is this:

newtype NPair a b = NPair (a, b) -- one value constructor

https://wiki.haskell.org/Newtype

newtype examples

Background (1A)
Constructors 50 Young Won Lim

9/4/18

Suppose you need to have a type which is very much like Int,

but with different ordering :

first by even numbers then by odd numbers

cannot define a new instance of Ord for Int

because then Haskell will not know which one to use.

defining a type which is isomorphic to Int:

One way to do this would be to define a new datatype:

data MyInt = MyInt Int

https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Type_advanced

newtype examples

Background (1A)
Constructors 51 Young Won Lim

9/4/18

Suppose you need to have a type which is very much like Int,

but with different ordering :

first by even numbers then by odd numbers

cannot define a new instance of Ord for Int

because then Haskell will not know which one to use.

defining a type which is isomorphic to Int:

One way to do this would be to define a new datatype:

data MyInt = MyInt Int

https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Type_advanced

Defining isomorphic types

Background (1A)
Constructors 52 Young Won Lim

9/4/18

data MyInt = MyInt Int

this type is not truly isomorphic to Int

it has one more value.

the type Int – all values of integers + one more value: ⊥

which is used to represent erroneous or undefined computations.

MyInt has not only values MyInt 0, MyInt 1 and so on,

but also MyInt ⊥

since datatypes can themselves be undefined,

it has an additional value: ⊥

which differs from MyInt ⊥

this makes the types non-isomorphic.

https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Type_advanced

Defining isomorphic types – bottom

Background (1A)
Constructors 53 Young Won Lim

9/4/18

data MyInt = MyInt Int

efficiency issues with this representation:

instead of simply storing an integer,

 we have to store a pointer to an integer

and have to follow that pointer

whenever we need the value of a MyInt.

https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Type_advanced

Defining isomorphic types – efficiency

Background (1A)
Constructors 54 Young Won Lim

9/4/18

data MyInt = MyInt Int

To get around these problems of datatype

(not isomorphic and efficiency)

Haskell has a newtype construction.

it has a constructor like a datatype,

but it can have only one constructor and

this constructor can have only one argument.

newtype MyInt = MyInt Int

https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Type_advanced

Defining isomorphic types – newtype

Background (1A)
Constructors 55 Young Won Lim

9/4/18

But we cannot define any of:

newtype Bad1 = Bad1a Int | Bad1b Double (2 constructors)

newtype Bad2 = Bad2 Int Double (2 arguments)

the fact that we cannot define Bad2 as above is not a big issue:

we simply use type instead:

type Good2 = Good2 Int Double

Or declare a newtype alias to the existing tuple type:

newtype Good2 = Good2 (Int,Double)

https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Type_advanced

Defining isomorphic types – one constructor one argument

Background (1A)
Constructors 56 Young Won Lim

9/4/18

instance Ord MyInt where

 compare (MyInt i) (MyInt j)

 | odd i && odd j = compare i j

 | even i && even j = compare i j

 | even i = LT

 | otherwise = GT

Like datatype, we can still derive classes over newtypes

like Show and Eq

implicitly assuming we have derived Eq over MyInt

in recent versions of GHC, on newtypes, you are allowed

to derive any class of which the base type (Int) is an instance.

For example, we could derive Num on MyInt

to provide arithmetic functions over it.

Pattern matching over newtypes is exactly as in datatypes. We can write constructor and
destructor functions for MyInt as follows:

mkMyInt i = MyInt i

unMyInt (MyInt i) = i

https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Type_advanced

Defining isomorphic types – MyInt example

Background (1A)
Constructors 57 Young Won Lim

9/4/18

Pattern matching over newtypes

is exactly as in datatypes.

We can write constructor and destructor functions

for MyInt as follows:

mkMyInt i = MyInt i

unMyInt (MyInt i) = i

https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Type_advanced

Defining isomorphic types – Pattern Matching

Young Won Lim
9/4/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

