
Young Won Lim
2014/4/19

●

●

MPI Point-to-Point Communications

Young Won Lim
2014/4/19

 Copyright (c) 2012 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

MPI P2P 3 Young Won Lim
2014/4/19

Communication Parameters

Point to point communication

Simple latency / bandwidth model

MPI message transfer is complex

Not good for ping-pong benchmark data

Message Envelope

supplementary information such as

length, sender, tag, etc

Eager Protocol

Rendezvous Protocol

MPI P2P 4 Young Won Lim
2014/4/19

Blocking

● Standard

● Buffered

● Synchronous

● Ready

Communication Modes

Immediate

● Standard

● Buffered

● Synchronous

● Ready

Immediate: there is no performance requirement on MPI_Isend.

An immediate send must return without requiring a matching receive at the destination.

An implementation is free to send the data to the destination before returning,
as long as the send call does not block waiting for a matching receive.

Different strategies of when to send the data offer different performance advantages and
disadvantages that will depend on the application.

MPI P2P 5 Young Won Lim
2014/4/19

It is up to MPI to decide whether outgoing messages will be buffered.

1) MPI may buffer outgoing messages.
→ the send call may complete before a matching receive is invoked.

2) Buffer space may be unavailable, or
 MPI may choose not to buffer outgoing messages, for performance reasons.

→ the send call will not complete until a matching receive has been posted,
 and the data has been moved to the receiver.

Thus, a send in standard mode can be started
whether or not a matching receive has been posted.
It may complete before a matching receive is posted.

The standard mode send is non-local: successful completion of the send
operation may depend on the occurrence of a matching receive.

(A) Standard Communication Mode

MPI P2P 6 Young Won Lim
2014/4/19

MPI Blocking Standard Send – Small Size Message

MPI_SEND standard blocking send

data transfer
from source
completes

MPI_RECV

Task continues when
data transfer to user
buffer is completed

size < threshold

int. buffer
(system buffer)

task waits

user buffer

MPI may buffer outgoing messages.
→ the send call may complete before
a matching receive is invoked.

MPI P2P 7 Young Won Lim
2014/4/19

MPI Blocking Standard Send – Large Size Message

MPI_SEND blocking send

data transfer
from source
completes

MPI_RECV

Task continues when
data transfer to user
buffer is completed

size > threshold

transfer doesn't begin
until corresponding
MPI_RECV has been
posted

task waits

task
waits

user buffer

Buffer space unavailable
not to buffer for performance reasons
→ the send call will not complete until
a matching receive has been posted,
and the data has been moved to the
receiver.

non-local

MPI P2P 8 Young Won Lim
2014/4/19

A buffered mode send operation can be started
whether or not a matching receive has been posted.

It may complete before a matching receive is posted.

However, unlike the standard send, this operation is local,
and its completion does not depend on the occurrence of a matching receive.

Thus, if a send is executed and no matching receive is posted,
then MPI must buffer the outgoing message,
so as to allow the send call to complete.

An error will occur if there is insufficient buffer space.
The amount of available buffer space is controlled by the user.

Buffer allocation by the user may be required
for the buffered mode to be effective.

(B) Buffered Communication Mode

MPI P2P 9 Young Won Lim
2014/4/19

MPI Blocking Buffered Send

MPI_BSEND buffered send

data transfer to the user
buffer is completed

MPI_RECV

Receiving task waits
until buffer is filled

task waits

Copy data
to buffer

Only one user supplied
buffer can be active

Buffer size = max data size +
MPI_BSEND_OVERHEAD + 7

user send buffer

decouples SEND from RECV
no sync overhead
but copy overhead
SEND/RECV order irrelevant
programmer can control buffer size

local

This operation is local,
and its completion does not
depend on the occurrence of a
matching receive.
(decoupled send / recv)

MPI P2P 10 Young Won Lim
2014/4/19

A send that uses the synchronous mode can be started
whether or not a matching receive was posted.

However, the send will complete successfully
only if a matching receive is posted,
and the receive operation has started
to receive the message sent by the synchronous send.

Thus, the completion of a synchronous send
not only indicates that the send buffer can be reused,
but also indicates that the receiver has reached a certain point in its execution,
namely that it has started executing the matching receive.

If both sends and receives are blocking operations
then the use of the synchronous mode provides
synchronous communication semantics:
a communication does not complete at either end
before both processes rendezvous at the communication.

A send executed in this mode is non-local.

(C) Synchronous Communication Mode

MPI P2P 11 Young Won Lim
2014/4/19

MPI Blocking Synchronous Send

MPI_SSEND blocking synchronous send

Send data
transfer
complete

task waits

MPI_RECV

Receiving task waits
until buffer is filled

task waits

handshaking

SEND/RECV order not critical
buffer size irrelevant
substantial synchronization overhead

non-local

the send will complete
successfully only if a
matching receive is posted,
and the receive operation
has started to receive the
message sent by the
synchronous send.

the completion of a sync send
- the send buffer can be reused,
- the receiver has reached a certain
point in its execution, namely that it
has started executing the matching
receive.

MPI P2P 12 Young Won Lim
2014/4/19

A send that uses the ready communication mode may be started
only if the matching receive is already posted.
Otherwise, the operation is erroneous and its outcome is undefined.

On some systems, this allows the removal of a hand-shake operation that is
otherwise required and results in improved performance.

The completion of the send operation
does not depend on the status of a matching receive,
and merely indicates that the send buffer can be reused.

A send operation that uses the ready mode has the same semantics as a
standard send operation, or a synchronous send operation;

it is merely that the sender provides additional information to the system (namely
that a matching receive is already posted), that can save some overhead.

In a correct program, therefore, a ready send could be replaced by a standard
send with no effect on the behavior of the program other than performance.

(D) Ready Communication Mode

MPI P2P 13 Young Won Lim
2014/4/19

MPI Blocking Ready Send

MPI_RSEND Blocking ready send

Send data
transfer complete

MPI_RECV

Receiving task waits
until buffer is filled

task waits

only sends when there is a
posted recv, else error

RECV must precede SEND
thus, need not handshake
the lowest overhead

no handshake :
user certifies that a
matching recv is posted

A send may be started only if the
matching receive is already posted.
Otherwise, the operation is erroneous
and its outcome is undefined.

The completion of the send operation
does not depend on the status of a
matching receive, and merely indicates
that the send buffer can be reused.

MPI P2P 14 Young Won Lim
2014/4/19

Blocking Send Modes

a send in standard mode can be started
whether or not a matching receive has been
posted.

MPI_Send Blocking Standard
MPI_Bsend Blocking Buffered
MPI_Ssend Blocking Synchronous

MPI_Rsend Blocking Ready

A send that uses the ready communication
mode may be started only if the matching
receive is already posted. Otherwise, the
operation is erroneous and its outcome is
undefined.

It may complete before a matching receive is
posted.

MPI_Rsend Blocking Ready

the send will complete successfully only if a
matching receive is posted, and the receive
operation has started to receive the message

MPI_Send Blocking Standard
MPI_Bsend Blocking Buffered

MPI_Ssend Blocking Synchronous

The completion of the send operation
does not depend on the status of a matching
receive, and merely indicates that the send
buffer can be reused.

MPI P2P 15 Young Won Lim
2014/4/19

MPI_Send Blocking Standard
MPI_Send will not return until you can use the send buffer.
It may or may not block
(it is allowed to buffer, either on the sender or receiver side,
or to wait for the matching receive).

MPI_Bsend Blocking Buffered
May buffer;
Returns immediately and you can use the send buffer.
A late add-on to the MPI specification.
Should be used only when absolutely necessary.

MPI_Ssend Blocking Synchronous
will not return until matching receive posted

MPI_Rsend Blocking Ready
May be used only if matching receive already posted.
User responsible for writing a correct program.

Blocking Send Modes

Blocking

MPI P2P 16 Young Won Lim
2014/4/19

MPI_Isend Immediate Standard
Nonblocking send. But not necessarily asynchronous.
You can NOT use the send buffer until either a successful, wait/test
or you KNOW that the message has been received (see MPI_Request_free).

MPI_Ibsend Immediate Buffered
buffered nonblocking

MPI_Issend ImmediateSynchronous
Synchronous nonblocking.
Note that a Wait/Test will complete only when the matching receive is posted.

MPI_Irsend Immediate Ready
As with MPI_Rsend, but nonblocking.

Immediate Send Modes

Immediate

MPI P2P 17 Young Won Lim
2014/4/19

does not return until the send buffer can be re-used.

After the data in the send buffer is
a) actually transferred to the receive buffer
b) copied into a temporary system buffer

message buffering decouples the send and receive operations.

A blocking send can complete as soon as the message was buffered,
even if no matching receive has been executed by the receiver.

Message buffering can be expensive

Blocking

MPI P2P 18 Young Won Lim
2014/4/19

Overlapping communication and computation
light-weight threads vs nonblocking communication.

A nonblocking send (receive) start call
initiates the send (receive) operation, but does not complete it.
will return before the buffer can be safely re-used.

A separate send (receive) complete call

is needed to complete the communication,
to verify that the data has been tranferred

With a special hardware

The use of nonblocking receives may also avoid system buffering and memory-
to-memory copying,

NonBlocking Communication (1)

MPI P2P 19 Young Won Lim
2014/4/19

Standard, Buffered, Synchronous Non-blocking Send
can be started whether or not a matching receive has been posted ;

Ready Non-blocking Send
can be started only if a matching receive is posted.

In all cases, the send start call is local: it returns immediately,
regardless of the status of other processes.

The send-complete call returns
when data has been copied out of the send buffer.
It may carry additional meaning, depending on the send mode.

Nonblocking sends can be matched with blocking receives, and vice-versa.

NonBlocking Communication (2)

MPI P2P 20 Young Won Lim
2014/4/19

Standard Non-blocking Send
If message buffer is used

the send-complete call may return before a matching receive occurred
Otherwise

the send-complete call may not return until a matching receive occurred,
and the message was copied into the receive buffer.

Buffered Non-blocking Send
the message must be buffered if there is no pending receive.

the send-complete call is local,
and must succeed regardless of the status of a matching receive.

Synchronous Non-blocking Send
the send can complete only if a matching receive has started.

→ a receive has been posted, and has been matched with the send.
the send-complete call is non-local.
 The send-complete call returns, if matched by a nonblocking receive,

before the receive complete call occurs.
(It can complete as soon as the sender ``knows'' the transfer will complete,
but before the receiver ``knows'' the transfer will complete.)

NonBlocking Communication (3)

MPI P2P 21 Young Won Lim
2014/4/19

MPI Blocking Synchronous Send

MPI_SSEND blocking synchronous send

Send data
transfer
complete

task waits

MPI_RECV

Receiving task waits
until buffer is filled

task waits

handshakinghandshaking

SEND/RECV order not critical
buffer size irrelevant
substantial synchronization overhead

MPI P2P 22 Young Won Lim
2014/4/19

MPI Blocking Ready Send

MPI_RSEND Blocking ready send

Send data
transfer
complete

MPI_RECV

Receiving task waits
until buffer is filled

task waits

onnly sends when there is a
posted recv, else error

RECV must precede SEND
thus, need not handshake
the lowest overhead

MPI P2P 23 Young Won Lim
2014/4/19

MPI Blocking Buffered Send

MPI_BSEND buffered send

data transfer to the user
buffer is completed

MPI_RECV

Receiving task waits
until buffer is filled

task waits

Copy data
to buffer

Only one user supplied
buffer can be active

Buffer size = max data size +
MPI_BSEND_OVERHEAD + 7

user send buffer

decouples SEND from RECV
no sync overhead
but copy overhead
SEND/RECV order irrelevant
programmer can control buffer size

MPI P2P 24 Young Won Lim
2014/4/19

MPI Blocking Standard Send – Small Size Message

MPI_SEND standard blocking send

data transfer
from source
completes

MPI_RECV

Task continues when
data transfer to user
buffer is completed

size < threshold

int. buffer
(system buffer)

task waits

user buffer

MPI P2P 25 Young Won Lim
2014/4/19

MPI Blocking Standard Send – Large Size Message

MPI_SEND blocking send

data transfer
from source
completes

MPI_RECV

Task continues when
data transfer to user
buffer is completed

size > threshold

transfer doesn't begin
until corresponding
MPI_RECV has been
posted

task waits

task
waits

user buffer

MPI P2P 26 Young Won Lim
2014/4/19

MPI Non-Blocking Standard Send – Small Size Message

MPI_ISEND nonblocking send

MPI_IRECV

transfer to the receiving
(system) buffer can be
avoided if MPI_IRECV is
posted early enough

size < threshold

no delay even though the
message is not yet in the user's
buffer on the receiving node

MPI_WAIT

no delay if MPI_WAIT
is late enough

int. buffer
(system buffer)

MPI P2P 27 Young Won Lim
2014/4/19

MPI Non-Blocking Standard Send – Large Size Message

data transfer
from source
completes

MPI_IRECV

Task continues when
data transfer to user
buffer is completed

size > threshold

transfer doesn't begin
until corresponding
MPI_RECV has been
posted

task waits

task
waits

MPI_ISEND nonblocking send

MPI P2P 28 Young Won Lim
2014/4/19

Message Aggregation

Young Won Lim
2014/4/19

References

[1] http://en.wikipedia.org/
[2] http://static.msi.umn.edu/tutorial/scicomp/general/MPI/mpi_coll_new.html
[3] https://computing.llnl.gov/tutorials/mpi/
[4] https://computing.llnl.gov/tutorials/mpi/
[5] Hager & Wellein, Introduction to High Performance Computing for Scientists and

Engineers
[6] http://www.mpi-forum.org/docs/mpi-11-html
[7] R. v. Engelen, www.cs.fsu.edu/~engelen/courses/HPC/MessagePassing2.pdf

http://static.msi.umn.edu/tutorial/scicomp/general/MPI/mpi_coll_new.html
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
http://www.mpi-forum.org/docs/mpi-11-html

