
Young Won Lim
2/10/18

Signal Analysis

Young Won Lim
2/10/18

 Copyright (c) 2016 – 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Audio Signal
Analysis (1B)

3 Young Won Lim
2/10/18

Based on

Signal Processing with Free Software : Practical Experiments
F. Auger

Audio Signal
Analysis (1B)

4 Young Won Lim
2/10/18

Octave Spectrogram Function

Function File: specgram (x)
Function File: specgram (x, n)
Function File: specgram (x, n, Fs)
Function File: specgram (x, n, Fs, window)
Function File: specgram (x, n, Fs, window, overlap)
Function File: [S, f, t] = specgram (…)

https://octave.sourceforge.io/signal/function/specgram.html

Audio Signal
Analysis (1B)

5 Young Won Lim
2/10/18

Input and Output Arguments

x : the signal x.

n : the size of overlapping segments (default: 256)

fs : specifies the sampling rate of the input signal

window : specifies an alternate window (default: hanning)

overlap : specifies the number of samples overlap (default: (window)/2)

S : the complex output of the FFT, one row per slice

f : the frequency indices corresponding to the rows of S

t : the time indices corresponding to the columns of S.

● if no output arguments are given,
the spectrogram is displayed.

● otherwise,
[S, f, t] will be returned

https://octave.sourceforge.io/signal/function/specgram.html

Audio Signal
Analysis (1B)

6 Young Won Lim
2/10/18

Spectrogram Operations

● the signal is chopped into overlapping segments of length n
● each segment is windowed and transformed by using the FFT
● if fs is given, it specifies the sampling rate of the input signal
● an alternate window to apply rather than the default of hanning (n)
● overlap: the number of samples overlap between successive segments

https://octave.sourceforge.io/signal/function/specgram.html

x

Audio Signal
Analysis (1B)

7 Young Won Lim
2/10/18

3D representation of spectrum over time-frequency domain

x

X

n-pt FFT

Fre
q
u
e
n
cy

 sca
l e

Time Scale

draw vertically
frequency component
at a given time

a spectral slice

Audio Signal
Analysis (1B)

8 Young Won Lim
2/10/18

Time and Frequency Resolutions

Frequency scale

Time Scale

Time Resolution = step

Frequency Resolution
= f0 = fs/n = 1/nTs

Audio Signal
Analysis (1B)

9 Young Won Lim
2/10/18

Step Size

Step size
● window length minus overlap length
● controls the horizontal (time) scale of the spectrogram.

● the range 1-5 msec is good for speech.

https://octave.sourceforge.io/signal/function/specgram.html

step = 20

window = 100

overlap=80

window – overlap = step

small step size large step size

Audio Signal
Analysis (1B)

10 Young Won Lim
2/10/18

Step Size Effects

Step size
● Increasing step size to compress the spectrogram
● Decreasing step size to stretch the spectrogram
● Increasing step size will reduce time resolution,
● Decreasing it will not improve it much

● beyond the limits imposed by the window size
● gain a little bit, depending on the shape of your window
● as the peak of the window slides over peaks in the signal energy

https://octave.sourceforge.io/signal/function/specgram.html

small step size large step size
stretched compressed
high resolution small resolution

Audio Signal
Analysis (1B)

11 Young Won Lim
2/10/18

Windowing

● the shape of the window is not so critical

so long as it goes gradually to zero on the ends.

https://octave.sourceforge.io/signal/function/specgram.html

window

*

Audio Signal
Analysis (1B)

12 Young Won Lim
2/10/18

Window Size

https://octave.sourceforge.io/signal/function/specgram.html

window1

overlapStep size

window2

overlapStep size

● a wide window
● more harmonic detail

● a narrow window
● averages over the harmonic detail

Audio Signal
Analysis (1B)

13 Young Won Lim
2/10/18

Formant Structure

The choice of window defines the time-frequency resolution.
● a wide window shows more harmonic detail
● a narrow window averages over the harmonic detail

● shows more formant structure

● "a range of frequencies in which

there is an absolute or relative

maximum in the sound spectrum"

● Spectrogram of American English

vowels [i, u, ɑ] showing

the formants F1 and F2

https://octave.sourceforge.io/signal/function/specgram.html
https://en.wikipedia.org/wiki/Formant

https://octave.sourceforge.io/signal/function/specgram.html

Audio Signal
Analysis (1B)

14 Young Won Lim
2/10/18

FFT Length

FFT length controls the vertical scale.

Selecting an FFT length greater than the window length

does not add any information to the spectrum

a good way to interpolate between frequency points

which can make for prettier spectrograms.

https://octave.sourceforge.io/signal/function/specgram.html

window = 100

n = 128

window = 100

n = 256

Audio Signal
Analysis (1B)

15 Young Won Lim
2/10/18

Normalization

After you have generated the spectral slices

● the phase information is discarded
● the energy normalized:

S = abs(S);
S = S/max(S(:));

https://octave.sourceforge.io/signal/function/specgram.html

Audio Signal
Analysis (1B)

16 Young Won Lim
2/10/18

Dynamic Range

then the dynamic range of the signal is chosen.

eliminate any dynamic range at the bottom end
max(the magnitude, minE=-40dB)
some minimum energy : minE=-40dB.
if (the magnitude < minE) then minE

eliminate any dynamic range in the very top of the range
min(the magnitude, maxE=-3dB)
some maximum energy : maxE=-3dB.
if (the magnitude > maxE) then maxE

S = max(S, 10^(minE/10));
S = min(S, 10^(maxE/10));

https://octave.sourceforge.io/signal/function/specgram.html

Audio Signal
Analysis (1B)

17 Young Won Lim
2/10/18

Frequency Range

the frequency range of the FFT is from [0, Fs/2]

for band limited signal,
no need to display the entire frequency range.

For the speech signal is below 4 kHz [0, 4000]
so there is no reason to display
up to the Nyquist frequency of 10 kHz fs/2 = 10
for a 20 kHz sampling rate. fs =20

Only keep the first 40% of the rows
of the returned S and f. [S, f, t]

to display the frequency range [minF, maxF],

idx = (f >= minF & f <= maxF);

https://octave.sourceforge.io/signal/function/specgram.html

Audio Signal
Analysis (1B)

18 Young Won Lim
2/10/18

Color Map

A brightness varying colormap such as copper or bone
gives good shape to the ridges and valleys.

A hue varying colormap such as jet or hsv
gives an indication of the steepness of the slopes.

The final spectrogram is displayed in log energy scale
and by convention has low frequencies on the bottom of the image:

imagesc(t, f, flipud(log(S(idx,:))));

https://octave.sourceforge.io/signal/function/specgram.html

Audio Signal
Analysis (1B)

19 Young Won Lim
2/10/18

Chirp (1)

Function File: chirp (t)
Function File: chirp (t, f0)
Function File: chirp (t, f0, t1)
Function File: chirp (t, f0, t1, f1)
Function File: chirp (t, f0, t1, f1, form)
Function File: chirp (t, f0, t1, f1, form, phase)

https://octave.sourceforge.io/signal/function/chirp.html

f0

f1

t1 time

frequency

f (t) = (f 1−f 0)⋅(t
t1)

2

+ f 0

f (t) = (f 1−f 0)⋅(t
t1)+f 0

f (t) = (f 1−f 0)
(t
t 1)+ f 0

form

Audio Signal
Analysis (1B)

20 Young Won Lim
2/10/18

Chirp (2)

Evaluate a chirp signal at time t.

A chirp signal is a frequency swept cosine wave.

 t vector of times to evaluate the chirp signal

 f0 frequency at time t=0 [0 Hz]

 t1 time t1 [1 sec]

 f1 frequency at time t=t1 [100 Hz]

 form shape of frequency sweep

’linear’ f(t) = (f1-f0)*(t/t1) + f0

’quadratic’ f(t) = (f1-f0)*(t/t1)^2 + f0

’logarithmic’ f(t) = (f1-f0)^(t/t1) + f0

 phase phase shift at t=0

https://octave.sourceforge.io/signal/function/specgram.html

Audio Signal
Analysis (1B)

21 Young Won Lim
2/10/18

Chirp (3)

Example

specgram(chirp([0:0.001:5])); # linear, 0-100Hz in 1 sec

specgram(chirp([-2:0.001:15], 400, 10, 100, ’quadratic’));

soundsc(chirp([0:1/8000:5], 200, 2, 500, "logarithmic"),8000);

If you want a different sweep shape f(t), use the following:
y = cos(2*pi*integral(f(t)) + 2*pi*f0*t + phase);

x = chirp([0:0.001:2],0,2,500); # freq. sweep from 0-500 over 2 sec.

https://octave.sourceforge.io/signal/function/specgram.html

Audio Signal
Analysis (1B)

22 Young Won Lim
2/10/18

Example 1 (1)

 x = chirp([0:0.001:2],0,2,500); # freq. sweep from 0-500 over 2 sec.
 Fs=1000; # sampled every 0.001 sec so rate is 1 kHz
 step=ceil(20*Fs/1000); # one spectral slice every 20 ms
 window=ceil(100*Fs/1000); # 100 ms data window
 specgram(x, 2^nextpow2(window), Fs, window, window-step);

 Fs = 1000 Hz = 1 kHz
 Ts = 1/1000 sec = 1 msec

 step = 20 msec
 window = 100 msec

 x = x
 n = 2^nextpow2(100) = 2^7 = 128
 Fs = 1000
 window = 100
 overlap = 100-20 = 80

https://octave.sourceforge.io/signal/function/specgram.html

Audio Signal
Analysis (1B)

23 Young Won Lim
2/10/18

Example 1 (2)

 Fs = 1000 Hz = 1 kHz
 Ts = 1/1000 sec = 1 msec

 step = 20 msec
 window = 100 msec

https://octave.sourceforge.io/signal/function/specgram.html

2 sec 2 sec * 1000 samples /sec = 2000 samples2 sec

20 msec * 1 samples /msec = 20 samples

20 msec * (Fs samples/sec) / (1000 msec/sec)

x

Audio Signal
Analysis (1B)

24 Young Won Lim
2/10/18

Example 1 (3)

 Fs = 1000 Hz = 1 kHz
 Ts = 1/1000 sec = 1 msec

 step = 20 msec : 20 samples
 window = 100 msec : 100 samples

 2000 samples = 96 steps * 20 samples /step + 80 samples
= (1920 + 80) samples

https://octave.sourceforge.io/signal/function/specgram.html

x

96 steps

Audio Signal
Analysis (1B)

25 Young Won Lim
2/10/18

Example 1 (4)

 x = chirp([0:0.001:2],0,2,500); # freq. sweep from 0-500 over 2 sec.
 Fs=1000; # sampled every 0.001 sec so rate is 1 kHz
 step=ceil(20*Fs/1000); # one spectral slice every 20 ms
 window=ceil(100*Fs/1000); # 100 ms data window
 specgram(x, 128, Fs, 100, 80);

https://octave.sourceforge.io/signal/function/specgram.html

step = 20

window = 100

a sample : 0.001 sec = 1 msec
20 samples : 20 msec
100 samples : 100 msec

window = 100

n = 128

overlap=80

Audio Signal
Analysis (1B)

26 Young Won Lim
2/10/18

Example 1 (5)

 Fs=1000;
 x = chirp([0:1/Fs:2],0,2,500); # freq. sweep from 0-500 over 2 sec.
 step=ceil(20*Fs/1000); # one spectral slice every 20 ms
 window=ceil(100*Fs/1000); # 100 ms data window

 ## test of automatic plot
 [S, f, t] = specgram(x);
 specgram(x, 2^nextpow2(window), Fs, window, window-step);

https://octave.sourceforge.io/signal/function/specgram.html

804020

step=20msec step=40msec step=80msec
96 steps 48 step 24 steps

Audio Signal
Analysis (1B)

27 Young Won Lim
2/10/18

Example 2

 Fs=1000;
 x = chirp([0:1/Fs:2],0,2,500); # freq. sweep from 0-500 over 2 sec.
 step=ceil(20*Fs/1000); # one spectral slice every 20 ms
 window=ceil(100*Fs/1000); # 100 ms data window

 ## test of automatic plot
 [S, f, t] = specgram(x);
 specgram(x, 2^nextpow2(window), Fs, window, window-step);

https://octave.sourceforge.io/signal/function/specgram.html

Audio Signal
Analysis (1B)

28 Young Won Lim
2/10/18

Example 2

 x = chirp([0:0.001:2],0,2,500); # freq. sweep from 0-500 over 2 sec.
 Fs=1000; # sampled every 0.001 sec so rate is 1 kHz
 step=ceil(20*Fs/1000); # one spectral slice every 20 ms
 window=ceil(100*Fs/1000); # 100 ms data window
 specgram(x, 2^nextpow2(window), Fs, window, window-step);

 ## Speech spectrogram
 [x, Fs] = auload(file_in_loadpath("sample.wav")); # audio file
 step = fix(5*Fs/1000); # one spectral slice every 5 ms
 window = fix(40*Fs/1000); # 40 ms data window
 fftn = 2^nextpow2(window); # next highest power of 2
 [S, f, t] = specgram(x, fftn, Fs, window, window-step);
 S = abs(S(2:fftn*4000/Fs,:)); # magnitude in range 0<f<=4000 Hz.
 S = S/max(S(:)); # normalize magnitude so that max is 0 dB.
 S = max(S, 10^(-40/10)); # clip below -40 dB.
 S = min(S, 10^(-3/10)); # clip above -3 dB.
 imagesc (t, f, log(S)); # display in log scale
 set (gca, "ydir", "normal"); # put the 'y' direction in the correct direction

https://octave.sourceforge.io/signal/function/specgram.html

Young Won Lim
2/10/18

References

[1] F. Auger, Signal Processing with Free Software : Practical Experiments

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

