
Young Won Lim
6/6/18

Applicative Sequencing (3C)

Young Won Lim
6/6/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Applicatives
Sequencing (3C) 3 Young Won Lim

6/6/18

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Applicatives
Sequencing (3C) 4 Young Won Lim

6/6/18

<$> and <*> operators

<*>

<$>Prelude> (*2) <$> (Just 3)

Just 6

Prelude> (Just (*2)) <*> (Just 3)

Just 6

apply

apply

function

wrapped function

Applicatives
Sequencing (3C) 5 Young Won Lim

6/6/18

<$> related operators

Functor map <$>

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<$) :: Functor f => a -> f b -> f a

($>) :: Functor f => f a -> b -> f b

The <$> operator is just a synonym

for the fmap function in the Functor typeclass.

fmap generalizes map for lists

to other data types : Maybe, IO, Map.

https://haskell-lang.org/tutorial/operators

replace b in f b with a … f a

replace a in f a with b … f b

<$

$>

Replacing the core

Applicatives
Sequencing (3C) 6 Young Won Lim

6/6/18

<$ / <$> / $> operators

there are two additional operators provided

which replace a value inside a Functor

instead of applying a function.

This can be both more convenient in some cases,

as well as for some Functors be more efficient.

value <$ functor = const value <$> functor

functor $> value = const value <$> functor

x <$ y = y $> x y :: functor

x $> y = y <$ x x :: functor

https://haskell-lang.org/tutorial/operators

<$>

const input outputvalue

Applicatives
Sequencing (3C) 7 Young Won Lim

6/6/18

<$ / <$> / $> operators examples

import Data.Functor

Prelude> Just 1 $> 2

Just 2

Prelude> Just 2 $> 1

Just 1

Prelude> 1 <$ Just 3

Just 1

Prelude> 3 <$ Just 1

Just 3

Prelude> 1 <$ Just 3

Just 1

Prelude> 3 <$ Just 1

Just 3

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/Simple%20examples

import Data.Functor

Prelude> (+1) <$> Just 2

Just 3

Prelude> (+1) <$> Just 3

Just 4

Prelude> (+1) <$> Nothing

Nothing

Prelude> const 2 <$> Just 111

Just 2

Applicatives
Sequencing (3C) 8 Young Won Lim

6/6/18

<$> examples

#!/usr/bin/env stack

-- stack --resolver ghc-7.10.3 runghc

import Data.Monoid ((<>))

main :: IO ()

main = do

 putStrLn "Enter your year of birth"

 year <- read <$> getLine

 let age :: Int

 age = 2020 - year

 putStrLn $ "Age in 2020: " <> show age

https://haskell-lang.org/tutorial/operators

getLine :: IO String

Input: read "12"::Double

Output: 12.0

-- this infix synonym for mappend is found in Data.Monoid
x <> y = mappend x y
infixr 6 <>

Applicatives
Sequencing (3C) 9 Young Won Lim

6/6/18

<*> related operators

Applicative function application <*>

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(*>) :: Applicative f => f a -> f b -> f b

(<*) :: Applicative f => f a -> f b -> f a

<*> is an operator that applies

a wrapped function to a wrapped value.

<*> is a part of the Applicative typeclass,

<*>is very often used as follows

foo <$> bar <*> baz

faa <*> bar <*> baz

https://haskell-lang.org/tutorial/operators

<*

*>

overwrites Result

Applicatives
Sequencing (3C) 10 Young Won Lim

6/6/18

*> operator

two helper operators

*> ignores the value from the first argument.

*> is completely equivalent to >> in Monad

a1 *> a2 = (id <$ a1) <*> a2

a1 *> a2 = do

 _ <- a1

 a2

https://haskell-lang.org/tutorial/operators

*>

overwrites Result

id outputvalue

id

<$

<*>

(id <$ a1)

(id <$ a1) <*> a2

Applicatives
Sequencing (3C) 11 Young Won Lim

6/6/18

<* operator

<* is the same thing in reverse: perform the first action then the second,

but only take the value from the first action.

(<*) = liftA2 const

a1 <* a2 = do

 res <- a1

 _ <- a2

 return res

https://haskell-lang.org/tutorial/operators

<*

overwrites Result

const input outputvalue

liftA2

const

Applicatives
Sequencing (3C) 12 Young Won Lim

6/6/18

<*> examples

foo <$> bar <*> baz

With a Monad, this is equivalent to:

do x <- bar

 y <- baz

 return (foo x y)

https://haskell-lang.org/tutorial/operators

<$>

function input output

<*>

input

xfoo
function input output

y
input

Applicatives
Sequencing (3C) 13 Young Won Lim

6/6/18

<*> examples

examples including parsers and serialization libraries.

using the aeson package: (handling JSON data)

data Person = Person { name :: Text, age :: Int } deriving Show

-- We expect a JSON object, so we fail at any non-Object value.

instance FromJSON Person where

 parseJSON (Object v) = Person <$> v .: "name" <*> v .: "age"

 parseJSON _ = empty

: append-head operator (cons)

. function composition operators

. name qualifier

https://haskell-lang.org/tutorial/operators

Applicatives
Sequencing (3C) 14 Young Won Lim

6/6/18

($> v.s. <$) and (*> v.s. <*)

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

*>

2nd overwrites 1st Result

ignore 1st return 2nd

<*

1st overwrites 2nd Result

return 1st ignore 2nd ResultResult

<$$>

replacing the corereplacing the core

Applicatives
Sequencing (3C) 15 Young Won Lim

6/6/18

(*>) v.s. (>>)

(*>) :: Applicative f => f a -> f b -> f b

(>>) :: Monad m => m a -> m b -> m b

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

*>

ignore 1st return 2nd Result

>>
ignore 1st return 2nd Result

the 2nd overwrites the 1st

the 2nd overwrites the 1st

Applicatives
Sequencing (3C) 16 Young Won Lim

6/6/18

(*> v.s. >>) and (pure v.s. return)

 (*>) :: Applicative f => f a -> f b -> f b

 (>>) :: Monad m => m a -> m b -> m b

 pure :: Applicative f => a -> f a

 return :: Monad m => a -> m a

the constraint changes from Applicative to Monad.

(*>) in Applicative pure in Applicative

(>>) in Monad return in Monad

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 17 Young Won Lim

6/6/18

Commutativity

the concept involved in commutative monads,

is the same as the one in commutative applicatives,

only specialised to Monad.

commutativity (or the lack thereof) affects

other functions which are derived from (<*>) as well.

(*>) is a clear example:

(*>) :: Applicative f => f a -> f b -> f b

(*>) combines effects

preserves only the values of

its second argument.

is equivalent to (>>), for monads

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

*>
ignore 1st return 2nd Result

>>
ignore 1st return 2nd Result

 Applicative

 Monad

Applicatives
Sequencing (3C) 18 Young Won Lim

6/6/18

Commutativity examples (1)

Prelude> Just 2 *> Just 3

Just 3 – with value

Prelude> Just 3 *> Just 2

Just 2 – with value

Prelude> Just 2 *> Nothing

Nothing – non-value

Prelude> Nothing *> Just 2

Nothing – non-value

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Maybe is commutative

swapping the arguments does not affect the effects
(the being and nothingness of wrapped values).

for IO, however, swapping the arguments
does reorder the effects:

(*>) combines effects

preserves only the values of

its second argument.

is equivalent to (>>), for monads

Applicatives
Sequencing (3C) 19 Young Won Lim

6/6/18

Commutativity examples (2)

Prelude> (print "foo" *> pure 2) *> (print "bar" *> pure 3)

"foo"

"bar"

3

Prelude> (print "bar" *> pure 3) *> (print "foo" *> pure 2)

"bar"

"foo"

2

Prelude> (print "foo" *> pure 2) <* (print "bar" *> pure 3)

"foo"

"bar"

2

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

IO is non-commutative

swapping the arguments
does reorder the effects:

Applicatives
Sequencing (3C) 20 Young Won Lim

6/6/18

Sequencing of Effects

Prelude> [(2*),(3*)] <*> [4,5]

1) [8,10,12,15] -- correct answer

2) [8,12,10,15]

The difference is that for the first (and correct) answer

the result is obtained

by taking the skeleton of the first list

and replacing each element [(2*),(3*)] <*> [4,5]

by all possible combinations [(2*) <*> 4, (2*) <*> 5, (3*) <*> 4, (3*) <*> 5]

with elements of the second list,

while for the other possibility [(2*),(3*)] <*> [4,5]

the starting point is the second list. [(2*) <*> 4, (3*) <*> 4, (2*) <*> 5, (3*) <*> 5]

sequencing of effects

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 21 Young Won Lim

6/6/18

Non-commutative Functors

by effects we mean the functorial context,

as opposed to the values within the functor

some effects examples:

the skeleton of a list,

actions performed in the real world in IO,

the existence of a value in Maybe

The existence of two legal implementations of (<*>) for lists

only differ in the sequencing of effects

[] is a non-commutative applicative functor.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Prelude> [(2*),(3*)] <*> [4,5]

1) [8,10,12,15]

2) [8,12,10,15]

Applicatives
Sequencing (3C) 22 Young Won Lim

6/6/18

Commutative Functors

a commutative applicative functor is

one for which the following holds:

liftA2 fn u v = liftA2 (flip fn) v u -- Commutativity

Or, equivalently,

fn <$> u <*> v = flip fn <$> v <*> u

liftA2 :: (a -> b -> c) -> f a -> f b -> f c

fn :: (a -> b -> c)

flip fn :: (b -> a -> c)

u :: f a

v :: f b

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

swapping the arguments does not affect
the effects as well as the value

Applicatives
Sequencing (3C) 23 Young Won Lim

6/6/18

Commutative Monads (1)

do do

 a <- actA b <- actB

 b <- actB a <- actA

 return (a + b) return (a + b)

commutative if the order of side effects is not important.

there are many monads that commute (e.g. Maybe, Random).

If the monad is commutative,

 then the operations captured within it

can be computed in parallel.

No good syntax for monads that commute

still an open research problem

https://stackoverflow.com/questions/5897845/relax-ordering-constraints-in-monadic-computation

Applicatives
Sequencing (3C) 24 Young Won Lim

6/6/18

Commutative Monads (2)

Commutative monads are monads

for which the order of actions makes no difference

(they commute), that is when following code:

do do

 a <- actA b <- actB

 b <- actB a <- actA

 m a b m a b

commutative if the order of side effects is not important.

Examples of commutative include:

 Reader monad

 Maybe monad

https://wiki.haskell.org/Monad#Commutative_monads
https://stackoverflow.com/questions/6089997/how-do-i-find-out-whether-a-monad-is-commutative

https://wiki.haskell.org/Monad#Commutative_monads

Applicatives
Sequencing (3C) 25 Young Won Lim

6/6/18

Left-to-right sequencing

The convention in Haskell is to always implement (<*>)

and other applicative operators using left-to-right sequencing.

Even though this convention helps reducing confusion,

it also means appearances sometimes are misleading.

For instance, the (<*) function is not flip (*>),

as it sequences effects from left to right just like (*>):

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(*>) :: Applicative f => f a -> f b -> f b

(<*) :: Applicative f => f a -> f b -> f a

(<**>) :: Applicative f => f a -> f (a -> b) -> f b

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 26 Young Won Lim

6/6/18

<**> operators

(<**>) :: Applicative f => f a -> f (a -> b) -> f b

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

from Control.Applicative

not flip (<*>)

a way of inverting the sequencing

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

[[(2*),(3*)] <*> [4, 5]

[8,10,12,15]

[4, 5] <**> [(2*),(3*)]

[8,12,10,15]

[4, 5] <**> [(2*),(3*)]

[8,10,12,15]

Applicatives
Sequencing (3C) 27 Young Won Lim

6/6/18

Functors, Applicative, and Monad

fmap :: Functor f => (a -> b) -> f a -> f b

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(>>=) :: Monad m => m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

*23 6

fmapJust 3 Just 6

*2

<*>Just 3 Just 6

Just

pure.*23

>>=Just 3 Just 6

Just 6

Applicatives
Sequencing (3C) 28 Young Won Lim

6/6/18

Functors, Applicative, and Monad Examples

fmap :: Functor f => (a -> b) -> f a -> f b

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(>>=) :: Monad m => m a -> (a -> m b) -> m b

Prelude> fmap (*2) (Just 3)

Just 6

Prelude> (Just (*2)) <*> (Just 3)

Just 6

Prelude> (Just 3) >>= (pure . (*2))

Just 6

Prelude> (Just 3) >>= (return . (*2))

Just 6

Applicatives
Sequencing (3C) 29 Young Won Lim

6/6/18

(=<<) : the flipped version of (>>=)

(>>=) :: Monad m => m a -> (a -> m b) -> m b

(=<<) :: Monad m => (a -> m b) -> m a -> m b

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

>>=

=<<

maps a -> m b function at the right
over monadic ma functors at the left

maps a -> m b function at the left
over monadic ma functors at the right

input

input

Applicatives
Sequencing (3C) 30 Young Won Lim

6/6/18

<$>, <*>, >>=, and =<< examples

<*>

>>=

=<<

<$>Prelude> (*2) <$> (Just 3)

Just 6

Prelude> (Just (*2)) <*> (Just 3)

Just 6

Prelude> (Just 3) >>= (pure . (*2))

Just 6

Prelude> (pure . (*2)) =<< (Just 3)

Just 6

apply

apply

apply

apply

Applicatives
Sequencing (3C) 31 Young Won Lim

6/6/18

Comparing the three characteristic methods

replace fmap by its infix synonym, (<$>)

replace (>>=) by its flipped version, (=<<)

fmap :: Functor f => (a -> b) -> f a -> f b

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(>>=) :: Monad m => m a -> (a -> m b) -> m b

(<$>) :: Functor t => (a -> b) -> (t a -> t b)

(<*>) :: Applicative t => t (a -> b) -> (t a -> t b)

(=<<) :: Monad t => (a -> t b) -> (t a -> t b)

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 32 Young Won Lim

6/6/18

All mapping functions over Functors

fmap, (<*>) and (=<<) are all mapping functions over Functors.

The differences between them are in what is being mapped (functions) over in each case:

(<$>) :: Functor t => (a -> b) -> (t a -> t b)

(<*>) :: Applicative t => t (a -> b) -> (t a -> t b)

(=<<) :: Monad t => (a -> t b) -> (t a -> t b)

 fmap maps (a -> b) arbitrary functions over functors.

 (<*>) maps t (a -> b) morphisms over (applicative) functors.

 (=<<) maps a -> t b functions over (monadic) functors.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 33 Young Won Lim

6/6/18

Power, Flexibility, Control

The differences of Functor, Applicative and Monad follow from

what these three mapping functions allow you to do.

As you move from fmap to (<*>) and then to (>>=),

you gain in power, versatility and control,

at the cost of guarantees about the results.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

values to refer to
plain values within
a functor

contexts to
whatever
surrounds them,

effects

Applicatives
Sequencing (3C) 34 Young Won Lim

6/6/18

fmap does not change in the context

The type of fmap ensures that it is impossible

to use it to change the context,

no matter which function it is given.

In (a -> b) -> t a -> t b, the (a -> b) function

has nothing to do with the t context of the t a functorial value,

and so applying it cannot affect the t context.

For that reason, if you do fmap f xs on some list xs

the number of elements of the list will never change.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 35 Young Won Lim

6/6/18

(<*>) changes the context

fmap cannot change the context

● the (a -> b) function has no relation with the t context

● the application of this function does not affect the context t

● the number of elements of the list will never change

Prelude> fmap (2*) [2,5,6] a list with 3 elements

[4,10,12] a list with 3 elements

That could be a safety guarantee or an unfortunate restriction

depending on your purpose

(<*>) is clearly able to change the context:

Prelude> [(2*),(3*)] <*> [2,5,6] two lists each with 3 elements

[4,10,12,6,15,18] a list with 6 elements

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 36 Young Won Lim

6/6/18

(<*>) carries a context

The t (a -> b) morphism carries a context of its own,

which is combined (applied) with the context

of the t a functorial value (a -> b).

(<*>), however, is subject to a more subtle restriction

while t (a -> b) morphisms carry context,

within them there are plain (a -> b),

which are still unable to modify the context.

this means the changes to the context (<*>) performs

are fully determined by the context of its arguments, t (a->b) or t b

and the values have no influence over the resulting context. (a->b) or a

Prelude> [(2*),(3*)] <*> [2,5,6] two lists each with 3 elements

[4,10,12,6,15,18] a list with 6 elements

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 37 Young Won Lim

6/6/18

Carrying a context examples

Prelude> (print "foo" *> pure (2*)) <*> (print "bar" *> pure 3) (pure (2*)) <*> (pure 3)

"foo"

"bar"

6

Prelude> (print "foo" *> pure 2) *> (print "bar" *> pure 3) (pure 2) *> (pure 3)

"foo"

"bar"

3

Prelude> (print "foo" *> pure undefined) *> (print "bar" *> pure 3)

"foo" (pure undefined) *> (pure 3)

"bar"

3

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 38 Young Won Lim

6/6/18

(>>=) creates a context

Prelude> [(2*),(3*)] <*> [2,5,6] two lists each with 3 elements

[4,10,12,6,15,18] a list with 6 elements

with list (<*>) you know that the length of the resulting list

will be the product of the lengths of the original lists,

with IO (<*>) you know that all real world effect

will happen as long as the evaluation terminates, and so forth.

with Monad, however, it is very different

(>>=) takes a (a -> t b) function,

and so it is able to create context creaing context t

from values a -> t b

which means a lot of flexibility:

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 39 Young Won Lim

6/6/18

Creating a context examples

Prelude> [1,2,5] >>= \x -> replicate x x [replicate 1 1, replicate 2 2, replicate 5,5]

[1,2,2,5,5,5,5,5]

Prelude> [0,0,0] >>= \x -> replicate x x [replicate 0 0, replicate 0 0, replicate 0,0]

[]

Prelude> return 3 >>= \x -> print $ if x < 10 then "Too small" else "OK"

"Too small"

Prelude> return 42 >>= \x -> print $ if x < 10 then "Too small" else "OK"

"OK"

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 40 Young Won Lim

6/6/18

Deciding context (1)

(<*>) :: m (a->b) -> (m a->m b)

(=<<) :: (a->m b) -> (m a->m b)

In both cases there is m a, but only in the second case

m a can decide whether the function (a->m b) gets applied.

In its turn, the function (a->m b) can "decide"

whether the function bound next gets applied

by producing such m b that does not "contain" b

(like [], Nothing or Left).

In Applicative there is no way for functions "inside" m (a->b)

to make such "decisions" - they always produce a value of type b.

https://stackoverflow.com/questions/23342184/difference-between-monad-and-applicative-in-haskell

Applicatives
Sequencing (3C) 41 Young Won Lim

6/6/18

Deciding context (2)

f 1 = Nothing -- here f "decides" to produce Nothing

f x = Just x -- if the argument is 1, then Nothing

Just 1 >>= f >>= g -- g doesn't get applied, because f decided so.

-- f gets 1 and returns Nothing

In Applicative this is not possible, no example can be shown.

The closest is:

f 1 = 0

f x = x

g <$> f <$> Just 1 -- f gets 1 and produces Just 0, g

 -- but f can't stop from getting applied

https://stackoverflow.com/questions/23342184/difference-between-monad-and-applicative-in-haskell

Applicatives
Sequencing (3C) 42 Young Won Lim

6/6/18

Flexibility

the extra flexibility

the less guarantees about

● whether your functions are able to unexpectedly erase

parts of a data structure for pathological inputs

● whether the control flow in your application remains intelligible

performance implications

● the complex data dependencies of monadic codes

might prevent refactoring and optimizations.

use only as much power as needed

it is often good to check

whether Applicative or Functor are sufficient

just before using Monad.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Sequencing (3C) 43 Young Won Lim

6/6/18

Monadic binding / composition operators

(>>=) :: Monad m => m a -> (a -> m b) -> m b

(=<<) :: Monad m => (a -> m b) -> m a -> m b

(>>) :: Monad m => m a -> m b -> m b

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)

https://haskell-lang.org/tutorial/operators

Applicatives
Sequencing (3C) 44 Young Won Lim

6/6/18

Monadic binding operators (1)

(>>=) :: Monad m => m a -> (a -> m b) -> m b

(=<<) :: Monad m => (a -> m b) -> m a -> m b

(>>) :: Monad m => m a -> m b -> m b

monadic binding operators

The two most basic are >>= and >>

>>=, >>, =<< can be expressed in do-notation

>> is just a synonym for *> from the Applicative class

=<< is just >>= with the arguments reversed

https://haskell-lang.org/tutorial/operators

Applicatives
Sequencing (3C) 45 Young Won Lim

6/6/18

Monadic binding operators (2)

https://haskell-lang.org/tutorial/operators

>>=

=<<

apply

apply

input

input

>>
ignore 1st return 2nd Result

the 2nd overwrites the 1st

(>>=) :: Monad m => m a -> (a -> m b) -> m b

(=<<) :: Monad m => (a -> m b) -> m a -> m b

(>>) :: Monad m => m a -> m b -> m b

Prelude> (Just 3) >>= (pure . (*2))

Just 6

Prelude> (pure . (*2)) =<< (Just 3)

Just 6

Prelude> (Just 2) >> (Just 3)

Just 3

Applicatives
Sequencing (3C) 46 Young Won Lim

6/6/18

Monadic binding operators (3)

(>>=) :: Monad m => m a -> (a -> m b) -> m b

(=<<) :: Monad m => (a -> m b) -> m a -> m b

(>>) :: Monad m => m a -> m b -> m b

m1 >>= func = do

 x <- m1 -- extract the value

 func x

m1 >> m2 = do

 _ <- m1 -- side effect only, ignore the value

 m2

func =<< m1 = do

 x <- m1 -- extract the value

 func x

https://haskell-lang.org/tutorial/operators

m1 :: m a

x :: a

func :: a -> m b

m1 :: m a

m2 :: m b

m1 :: m a

x :: a

func :: a -> m b

Applicatives
Sequencing (3C) 47 Young Won Lim

6/6/18

Monadic composition operators (1)

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)

composition operators for two monadic functions

>=>=, <=< can be expressed in do-notation

>=> pipes the result from the left side to the right side

<=< pipes the result from the right side to the left side

https://haskell-lang.org/tutorial/operators

Applicatives
Sequencing (3C) 48 Young Won Lim

6/6/18

Monadic binding operators (2)

https://haskell-lang.org/tutorial/operators

>=>
apply

input

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)

<=<
apply

input

Prelude Control.Monad> ((\x -> Just (x+0.5)) >=> (\x -> Just (x*2))) 3

Just 7.0

Prelude Control.Monad> ((\x -> Just (x+0.5)) <=< (\x -> Just (x*2))) 3

Just 6.5

Applicatives
Sequencing (3C) 49 Young Won Lim

6/6/18

Monadic composition operators (3)

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)

f >=> g = \x -> do

 y <- f x

 g y

g <=< f = \x -> do

 y <- f x

 g y

f >=> g = g <=< f

g >=> f = f <=< g

https://haskell-lang.org/tutorial/operators

f :: a -> m b, x :: a, f x :: m b

g :: b -> m c, y :: b, g y :: m c

First f

Then g

f :: a -> m b, x :: a, f x :: m b

g :: b -> m c, y :: b, g y :: m c

Young Won Lim
6/6/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50

