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Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Currying 

Currying recursively transforms 
a function that takes multiple arguments 
into a function that takes just a single argument and 
returns another function if any arguments are still needed.

f :: a -> b -> c    

https://wiki.haskell.org/Currying

f x y

(f x) y

g y

f :: a -> b -> c    

g :: b -> c    

f :: a -> (b -> c)    

f

g

x

y z

a (b->c)

b c

f :: a -> b -> c

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

f :: a -> (b -> c)
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Curry & Uncurry 

f :: a -> b -> c     is the curried form of   g :: (a, b) -> c

f = curry g
g = uncurry f

f x y = g (x,y)    

the curried form is usually more convenient 
because it allows partial application.

all functions are considered curried

all functions take just one argument

https://wiki.haskell.org/Currying

f :: a -> b -> c g :: (a, b) -> c

currying

uncurrying

f x y g (x,y)    

the curried form 
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Functor typeclass – instances

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

class Functor f

instance Functor Maybe 
instance Functor [ ] 

func
a b

fmap
f a f b

function fmap

type constructor  f
function func 

f is a type constructor taking one type parameter

Maybe instance of the Functor typeclass

[ ] instance of the Functor typeclass
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The Functor Typeclass

class Functor f where

    fmap :: (a -> b) -> f a -> f b

If a type f is an instance of Functor, 

fmap can be used to apply 

a function of the type (a -> b) 

to values of a type a in it (f a). 

fmap promotes functions (a -> b)

to act on functorial values. (f a -> f b)

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

fmap id = id                   -- 1st functor law

fmap (g . h) = fmap g . fmap h -- 2nd functor law

g :: b -> c

h :: a -> b

g . h :: a -> c

To ensure fmap works sanely, 

any instance  f of Functor 

must comply with the above two laws
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Examples of fmap over the Maybe Functor instance

    fmap negate (Just 2) negate <$> Just 2

Just (-2) Just (-2)

    fmap negate Nothing negate <$> Nothing

Nothing Nothing

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Infix synonym

https://en.wikibooks.org/wiki/Haskell/Applicative_functors
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Applying two argument functions

Problem: 

to apply a function of two arguments 

to functorial values

Ex: to sum Just 2 and Just 3

The brute force approach would be 

extracting the values from the Maybe wrapper. 

● we have to do tedious checks for Nothing

● extracting the value might is not possible 

for functors like IO

Partial application

● use fmap to partially apply (+) to the first argument:

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

+2
5

3

How?
Just 2

Just 5
Just 3
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Partial Application

Prelude> :t (+)

(+) :: Num a => a -> a -> a

Prelude> :t (+) <$> Just 2

(+) <$> Just 2 :: Num a => Maybe (a -> a)

Functions wrapped in Maybe

(+) <$> Just 2

Just (2+) 

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Prelude> (<$> Just 3) <$> (+) <$> Just 2

Just (Just 5)

 (<$> Just 3) <$> (+) <$> Just 2

 (<$> Just 3) <$> Just (2+) 

Just( (2+) <$> Just 3) 

Just (Just 5)
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Partial Application

Prelude> :t (<$> Just 3)

(<$> Just 3) :: Num a => (a -> b) -> Maybe b

Prelude> (<$> Just 3) (*3)

Just 9

Prelude> (<$> Just 3) (+3)

Just 6

Prelude> :t (+)

(+) :: Num a => a -> a -> a

Prelude> :t (+) <$> Just 2

(+) <$> Just 2 :: Num a => Maybe (a -> a)

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Prelude> (<$> Just 3) <$> (+) <$> Just 2

Just (Just 5)

 (<$> Just 3) <$> (+) <$> Just 2

 (<$> Just 3) <$> Just (2+) 

Just( <$> Just 3  (2+) ) 

Just( (2+)  <$> Just 3 ) 

Just (Just 5)
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<*> Operator

(<*>) :: f (a -> b) -> f a -> f b

(+) <$> Just 2 <*> Just 3

Just (2+) <*> Just 3

Just 5

Prelude> :t (<*>)

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(+) <$> Just 2 <*> Just 3

Just 5

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

(+) <$> Just 2 :: f (a -> b) 

Just (2+) :: f (a -> b)  

Just 3 :: f a

((+) <$> Just 2) <*> Just 3 : f (a -> b) -> f a 

Just 5 :: f b
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Applicative Style 

(<*>) is one of the methods of Applicative

the type class of applicative functors - 

functors that support function application 

within their contexts. 

Expressions (+) <$> Just 2 <*> Just 3 

are said to be written in applicative style, 

which look like regular function application 

while working with a functor. 

(+) <$> Just 2 <*> Just 3 

(+)    2       3

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

(+) <$> Just 2 <*> Just 2

Just ( (+)  2   3 ) 

Just 5 
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<*> Application of a function 

Just (+3) <*> Just 2

function wrapped in a Just integer wrapped in a Just 

Just (+ 3) Just 2

Just 5

Just 5

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

extract

map Extracting and Mapping

(<*>) :: f (a -> b) -> f a -> f b
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Mapping functions over the Functor [  ] (1)

*Integer
Integer

fmap[ Integer ] [ Integer -> Integer ]

Integer
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Mapping functions over the Functor [  ] (2)

*Integer
Integer

fmap[ Integer ]

Integer

(* k)Integer Integer
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Mapping functions over the Functor [  ] (3)

*Integer
Integer

fmap[ Integer ]

Integer

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(* k)Integer Integer

func
a b

fmap
f a f b

func
a b

map
[ a ] [ b ]

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

Applicative

Functor
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Mapping functions over the Functor [  ] (4)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

Applicative

Functor

*Integer
Integer

fmap

Integer

[1,2,3] [(*1),(*2),(*3)]
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Applicative : Mapping functions 

*

Integer
Integer

(* 1)
Integer Integer

Integer *

Integer
Integer

(* 2)
Integer Integer

Integer *

Integer
Integer

(* 3)
Integer Integer

Integer *

Integer
Integer

(* 4)
Integer Integer

Integer

1 2 3 4

A list of functions
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Functor : Mapping values

(* 2)
Integer Integer

(* 2)
Integer Integer

(* 2)
Integer Integer

(* 2)
Integer

1 2 3 4

2 4 6 8

A list of integers
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Applicatives vs. Functors

*Integer
Integer

fmap[ Integer ]

(* 1)Integer Integer

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

1
2
3

(* 2)

(* 3)
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Double applications of fmap (1)

ghci> let a = fmap (*) [1,2,3,4]  

ghci> :t a  

a :: [Integer -> Integer]  

ghci> fmap (\f -> f 9) a  

[9,18,27,36]  

*Integer
Integer

fmap[ Integer ] [ Integer ]

[1,2,3,4]  [(*) 1, (*) 2, (*) 3, (*) 4 ]  

[(* 1), (* 2), (* 3), (* 4) ]  

(* 1)Integer Integer

(* 2)Integer Integer

(* 3)Integer Integer

(* 4)Integer Integer

Integer

 [Integer -> Integer] 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

a =
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Double applications of fmap (2)

ghci> let a = fmap (*) [1,2,3,4]  

1st fmap

ghci> fmap (\f -> f 9) a  

[9,18,27,36]  

2nd fmap

(* 1)Integer Integer

(* 2)Integer Integer

(* 3)Integer Integer

(* 4)Integer Integer

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

a =

(* 1)9

(* 2)9

(* 3)9

(* 4)9

9

18

27

36
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Applications of fmap

fmap (*) [1, 2, 3, 4]  

[(*) 1, (*) 2, (*) 3, (*) 4]

[(* 1), (* 2), (* 3), (* 4)]

fmap (\f -> f 9) [(* 1), (* 2), (* 3), (* 4)]

[9,18,27,36]  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Mapping functions over the Functor Maybe (1)

*Integer
Integer

fmapMaybe Integer

Integer

(* k)Integer IntegerMaybe
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Mapping functions over the Functor Maybe (2)

*Integer
Integer

fmapMaybe Integer

(* k)Integer Integer

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

Maybe  

Integer

Maybe    Integer (* k)Integer IntegerMaybe
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Mapping functions over the Functor Maybe (3)

*Integer
Integer

fmapJust 3

3

Just (* 3)

*Integer
Integer

fmapMaybe Integer Maybe (Integer -> Integer)

Integer
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Function wrapped in Just 

fmap (*) (Just 3)

function wrapped in a Just 

Just (* 3) 

integer wrapped in a Just 

Just 2

*Integer
Integer

fmapMaybe Integer Maybe (Integer -> Integer)

Just 3 Just ((*) 3)

Just (* 3)

Integer

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(* 3)Integer IntegerMaybe
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<*> Application of a function 

Just (* 3) <*> Just 2

function wrapped in a Just integer wrapped in a Just 

Just (* 3) Just 2

Just 6

Just 6

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

extract

map Extracting and Mapping
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Default Container Function Pure

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

pure 9   Just 9

 10   Just 10pure

  pure 9

  pure 10

=  Just 9

= Just 10

to wrap an integer
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Default Container Function Pure

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 (+3)   Just (+3)pure

 (++”haha”)   Just (++”haha”)pure

(* k)
Integer Integer

Maybe  pure Maybe  (* k)
Integer Integer

(* k)
Integer Integer

  pure (+3)

  pure (++”haha”)

=  Just (+3)

=  Just (++”haha”)

to wrap a function 
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Applicative Functor Apply <*> Examples (1)

Prelude> Just (+3) <*> Just 9  

Just 12

  

Prelude> pure (+3) <*> Just 10  

Just 13  

Prelude> pure (+3) <*> Just 11

Just 12  

Prelude> Just (++"hahah") <*> Nothing  

Nothing  

Prelude> Nothing <*> Just "woot"  

Nothing 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Just 9
Just 12

Just (+3)
(<*>)

Just 10
Just 13

Just (+3)
(<*>)

Just 11
Just 14

Just (+3)
(<*>)

Nothing
Nothing

Just (++”haha”)
(<*>)

Just “woot”
Nothing

Nothing
(<*>)
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Applicative Functor Apply <*> Examples (2)

Prelude> (+) <$> Just 3 <*> Just 5

Just 8

  

Prelude> pure (+) <*> Just 3 <*> Just 5

Just 8  

Prelude> Just (+) <*> Just 3 <*> Just 5

Just 8  

Prelude> :t (+) <$> Just 3 

(+) <$> Just 3 :: Num a => Maybe (a -> a)

Prelude> :t Just (+3)

Just (+3) ::Num a => Maybe (a -> a)

Just 5
Just 8

Just (+3)
(<*>)

Just 5
Just 8

Just (+3)
(<*>)

Just 5
Just 8

Just (+3)
(<*>)
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Applicative Functor Apply <*> Examples (3) 

Prelude> [ (+), (*) ] <*> [ 2 ] <*> [ 5 ]

[7,10]

Prelude> [ (+), (*) ] <*> [ 2,3 ] <*> [ 5 ]

[7,8,10,15]

Prelude> [ (+), (*) ] <*> [ 2,3 ] <*> [ 5,6 ]

[7,8,8,9,10,12,15,18]

 5

(*2)
(<*>)

 5

 (+2)

 5

 (*3)
(<*>)

 5

 (*2)

(<*>)

 5

 (+3)

 5

 (+2)

 5  6  5  6  5  6  5  6

 (+2)  (+2)  (+3)  (+3)  (*2)  (*2)  (*3)  (*3)
(<*>) [7,8,8,9,10,12,15,18]

[7,8,10,15]

[7,10]
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