
Young Won Lim
6/6/18

Applicatives Overview (3A)



Young Won Lim
6/6/18

 Copyright (c)  2016  - 2018 Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com


Applicatives 
Overview (3A) 3 Young Won Lim

6/6/18

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids


Applicatives 
Overview (3A) 4 Young Won Lim

6/6/18

Currying 

Currying recursively transforms 
a function that takes multiple arguments 
into a function that takes just a single argument and 
returns another function if any arguments are still needed.

f :: a -> b -> c    

https://wiki.haskell.org/Currying

f x y

(f x) y

g y

f :: a -> b -> c    

g :: b -> c    

f :: a -> (b -> c)    

f

g

x

y z

a (b->c)

b c

f :: a -> b -> c

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

f :: a -> (b -> c)



Applicatives 
Overview (3A) 5 Young Won Lim

6/6/18

Curry & Uncurry 

f :: a -> b -> c     is the curried form of   g :: (a, b) -> c

f = curry g
g = uncurry f

f x y = g (x,y)    

the curried form is usually more convenient 
because it allows partial application.

all functions are considered curried

all functions take just one argument

https://wiki.haskell.org/Currying

f :: a -> b -> c g :: (a, b) -> c

currying

uncurrying

f x y g (x,y)    

the curried form 



Functor (1A) 6 Young Won Lim
6/6/18

Functor typeclass – instances

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

class Functor f

instance Functor Maybe 
instance Functor [ ] 

func
a b

fmap
f a f b

function fmap

type constructor  f
function func 

f is a type constructor taking one type parameter

Maybe instance of the Functor typeclass

[ ] instance of the Functor typeclass



Applicatives 
Overview (3A) 7 Young Won Lim

6/6/18

The Functor Typeclass

class Functor f where

    fmap :: (a -> b) -> f a -> f b

If a type f is an instance of Functor, 

fmap can be used to apply 

a function of the type (a -> b) 

to values of a type a in it (f a). 

fmap promotes functions (a -> b)

to act on functorial values. (f a -> f b)

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

fmap id = id                   -- 1st functor law

fmap (g . h) = fmap g . fmap h -- 2nd functor law

g :: b -> c

h :: a -> b

g . h :: a -> c

To ensure fmap works sanely, 

any instance  f of Functor 

must comply with the above two laws



Applicatives 
Overview (3A) 8 Young Won Lim

6/6/18

Examples of fmap over the Maybe Functor instance

    fmap negate (Just 2) negate <$> Just 2

Just (-2) Just (-2)

    fmap negate Nothing negate <$> Nothing

Nothing Nothing

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Infix synonym

https://en.wikibooks.org/wiki/Haskell/Applicative_functors


Applicatives 
Overview (3A) 9 Young Won Lim

6/6/18

Applying two argument functions

Problem: 

to apply a function of two arguments 

to functorial values

Ex: to sum Just 2 and Just 3

The brute force approach would be 

extracting the values from the Maybe wrapper. 

● we have to do tedious checks for Nothing

● extracting the value might is not possible 

for functors like IO

Partial application

● use fmap to partially apply (+) to the first argument:

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

+2
5

3

How?
Just 2

Just 5
Just 3



Applicatives 
Overview (3A) 10 Young Won Lim

6/6/18

Partial Application

Prelude> :t (+)

(+) :: Num a => a -> a -> a

Prelude> :t (+) <$> Just 2

(+) <$> Just 2 :: Num a => Maybe (a -> a)

Functions wrapped in Maybe

(+) <$> Just 2

Just (2+) 

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Prelude> (<$> Just 3) <$> (+) <$> Just 2

Just (Just 5)

 (<$> Just 3) <$> (+) <$> Just 2

 (<$> Just 3) <$> Just (2+) 

Just( (2+) <$> Just 3) 

Just (Just 5)



Applicatives 
Overview (3A) 11 Young Won Lim

6/6/18

Partial Application

Prelude> :t (<$> Just 3)

(<$> Just 3) :: Num a => (a -> b) -> Maybe b

Prelude> (<$> Just 3) (*3)

Just 9

Prelude> (<$> Just 3) (+3)

Just 6

Prelude> :t (+)

(+) :: Num a => a -> a -> a

Prelude> :t (+) <$> Just 2

(+) <$> Just 2 :: Num a => Maybe (a -> a)

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Prelude> (<$> Just 3) <$> (+) <$> Just 2

Just (Just 5)

 (<$> Just 3) <$> (+) <$> Just 2

 (<$> Just 3) <$> Just (2+) 

Just( <$> Just 3  (2+) ) 

Just( (2+)  <$> Just 3 ) 

Just (Just 5)



Applicatives 
Overview (3A) 12 Young Won Lim

6/6/18

<*> Operator

(<*>) :: f (a -> b) -> f a -> f b

(+) <$> Just 2 <*> Just 3

Just (2+) <*> Just 3

Just 5

Prelude> :t (<*>)

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(+) <$> Just 2 <*> Just 3

Just 5

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

(+) <$> Just 2 :: f (a -> b) 

Just (2+) :: f (a -> b)  

Just 3 :: f a

((+) <$> Just 2) <*> Just 3 : f (a -> b) -> f a 

Just 5 :: f b



Applicatives 
Overview (3A) 13 Young Won Lim

6/6/18

Applicative Style 

(<*>) is one of the methods of Applicative

the type class of applicative functors - 

functors that support function application 

within their contexts. 

Expressions (+) <$> Just 2 <*> Just 3 

are said to be written in applicative style, 

which look like regular function application 

while working with a functor. 

(+) <$> Just 2 <*> Just 3 

(+)    2       3

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

(+) <$> Just 2 <*> Just 2

Just ( (+)  2   3 ) 

Just 5 



Applicatives 
Overview (3A) 14 Young Won Lim

6/6/18

<*> Application of a function 

Just (+3) <*> Just 2

function wrapped in a Just integer wrapped in a Just 

Just (+ 3) Just 2

Just 5

Just 5

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

extract

map Extracting and Mapping

(<*>) :: f (a -> b) -> f a -> f b



Applicatives 
Overview (3A) 15 Young Won Lim

6/6/18

Mapping functions over the Functor [  ] (1)

*Integer
Integer

fmap[ Integer ] [ Integer -> Integer ]

Integer



Applicatives 
Overview (3A) 16 Young Won Lim

6/6/18

Mapping functions over the Functor [  ] (2)

*Integer
Integer

fmap[ Integer ]

Integer

(* k)Integer Integer



Applicatives 
Overview (3A) 17 Young Won Lim

6/6/18

Mapping functions over the Functor [  ] (3)

*Integer
Integer

fmap[ Integer ]

Integer

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(* k)Integer Integer

func
a b

fmap
f a f b

func
a b

map
[ a ] [ b ]

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

Applicative

Functor



Applicatives 
Overview (3A) 18 Young Won Lim

6/6/18

Mapping functions over the Functor [  ] (4)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

Applicative

Functor

*Integer
Integer

fmap

Integer

[1,2,3] [(*1),(*2),(*3)]



Applicatives 
Overview (3A) 19 Young Won Lim

6/6/18

Applicative : Mapping functions 

*

Integer
Integer

(* 1)
Integer Integer

Integer *

Integer
Integer

(* 2)
Integer Integer

Integer *

Integer
Integer

(* 3)
Integer Integer

Integer *

Integer
Integer

(* 4)
Integer Integer

Integer

1 2 3 4

A list of functions



Applicatives 
Overview (3A) 20 Young Won Lim

6/6/18

Functor : Mapping values

(* 2)
Integer Integer

(* 2)
Integer Integer

(* 2)
Integer Integer

(* 2)
Integer

1 2 3 4

2 4 6 8

A list of integers



Applicatives 
Overview (3A) 21 Young Won Lim

6/6/18

Applicatives vs. Functors

*Integer
Integer

fmap[ Integer ]

(* 1)Integer Integer

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

1
2
3

(* 2)

(* 3)



Applicatives 
Overview (3A) 22 Young Won Lim

6/6/18

Double applications of fmap (1)

ghci> let a = fmap (*) [1,2,3,4]  

ghci> :t a  

a :: [Integer -> Integer]  

ghci> fmap (\f -> f 9) a  

[9,18,27,36]  

*Integer
Integer

fmap[ Integer ] [ Integer ]

[1,2,3,4]  [(*) 1, (*) 2, (*) 3, (*) 4 ]  

[(* 1), (* 2), (* 3), (* 4) ]  

(* 1)Integer Integer

(* 2)Integer Integer

(* 3)Integer Integer

(* 4)Integer Integer

Integer

 [Integer -> Integer] 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

a =



Applicatives 
Overview (3A) 23 Young Won Lim

6/6/18

Double applications of fmap (2)

ghci> let a = fmap (*) [1,2,3,4]  

1st fmap

ghci> fmap (\f -> f 9) a  

[9,18,27,36]  

2nd fmap

(* 1)Integer Integer

(* 2)Integer Integer

(* 3)Integer Integer

(* 4)Integer Integer

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

a =

(* 1)9

(* 2)9

(* 3)9

(* 4)9

9

18

27

36



Applicatives 
Overview (3A) 24 Young Won Lim

6/6/18

Applications of fmap

fmap (*) [1, 2, 3, 4]  

[(*) 1, (*) 2, (*) 3, (*) 4]

[(* 1), (* 2), (* 3), (* 4)]

fmap (\f -> f 9) [(* 1), (* 2), (* 3), (* 4)]

[9,18,27,36]  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids



Applicatives 
Overview (3A) 25 Young Won Lim

6/6/18

Mapping functions over the Functor Maybe (1)

*Integer
Integer

fmapMaybe Integer

Integer

(* k)Integer IntegerMaybe



Applicatives 
Overview (3A) 26 Young Won Lim

6/6/18

Mapping functions over the Functor Maybe (2)

*Integer
Integer

fmapMaybe Integer

(* k)Integer Integer

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

Maybe  

Integer

Maybe    Integer (* k)Integer IntegerMaybe



Applicatives 
Overview (3A) 27 Young Won Lim

6/6/18

Mapping functions over the Functor Maybe (3)

*Integer
Integer

fmapJust 3

3

Just (* 3)

*Integer
Integer

fmapMaybe Integer Maybe (Integer -> Integer)

Integer



Applicatives 
Overview (3A) 28 Young Won Lim

6/6/18

Function wrapped in Just 

fmap (*) (Just 3)

function wrapped in a Just 

Just (* 3) 

integer wrapped in a Just 

Just 2

*Integer
Integer

fmapMaybe Integer Maybe (Integer -> Integer)

Just 3 Just ((*) 3)

Just (* 3)

Integer

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(* 3)Integer IntegerMaybe



Applicatives 
Overview (3A) 29 Young Won Lim

6/6/18

<*> Application of a function 

Just (* 3) <*> Just 2

function wrapped in a Just integer wrapped in a Just 

Just (* 3) Just 2

Just 6

Just 6

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

extract

map Extracting and Mapping



Applicatives 
Overview (3A) 30 Young Won Lim

6/6/18

Default Container Function Pure

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

pure 9   Just 9

 10   Just 10pure

  pure 9

  pure 10

=  Just 9

= Just 10

to wrap an integer



Applicatives 
Overview (3A) 31 Young Won Lim

6/6/18

Default Container Function Pure

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 (+3)   Just (+3)pure

 (++”haha”)   Just (++”haha”)pure

(* k)
Integer Integer

Maybe  pure Maybe  (* k)
Integer Integer

(* k)
Integer Integer

  pure (+3)

  pure (++”haha”)

=  Just (+3)

=  Just (++”haha”)

to wrap a function 



Applicatives 
Overview (3A) 32 Young Won Lim

6/6/18

Applicative Functor Apply <*> Examples (1)

Prelude> Just (+3) <*> Just 9  

Just 12

  

Prelude> pure (+3) <*> Just 10  

Just 13  

Prelude> pure (+3) <*> Just 11

Just 12  

Prelude> Just (++"hahah") <*> Nothing  

Nothing  

Prelude> Nothing <*> Just "woot"  

Nothing 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Just 9
Just 12

Just (+3)
(<*>)

Just 10
Just 13

Just (+3)
(<*>)

Just 11
Just 14

Just (+3)
(<*>)

Nothing
Nothing

Just (++”haha”)
(<*>)

Just “woot”
Nothing

Nothing
(<*>)



Applicatives 
Overview (3A) 33 Young Won Lim

6/6/18

Applicative Functor Apply <*> Examples (2)

Prelude> (+) <$> Just 3 <*> Just 5

Just 8

  

Prelude> pure (+) <*> Just 3 <*> Just 5

Just 8  

Prelude> Just (+) <*> Just 3 <*> Just 5

Just 8  

Prelude> :t (+) <$> Just 3 

(+) <$> Just 3 :: Num a => Maybe (a -> a)

Prelude> :t Just (+3)

Just (+3) ::Num a => Maybe (a -> a)

Just 5
Just 8

Just (+3)
(<*>)

Just 5
Just 8

Just (+3)
(<*>)

Just 5
Just 8

Just (+3)
(<*>)



Applicatives 
Overview (3A) 34 Young Won Lim

6/6/18

Applicative Functor Apply <*> Examples (3) 

Prelude> [ (+), (*) ] <*> [ 2 ] <*> [ 5 ]

[7,10]

Prelude> [ (+), (*) ] <*> [ 2,3 ] <*> [ 5 ]

[7,8,10,15]

Prelude> [ (+), (*) ] <*> [ 2,3 ] <*> [ 5,6 ]

[7,8,8,9,10,12,15,18]

 5

(*2)
(<*>)

 5

 (+2)

 5

 (*3)
(<*>)

 5

 (*2)

(<*>)

 5

 (+3)

 5

 (+2)

 5  6  5  6  5  6  5  6

 (+2)  (+2)  (+3)  (+3)  (*2)  (*2)  (*3)  (*3)
(<*>) [7,8,8,9,10,12,15,18]

[7,8,10,15]

[7,10]



Young Won Lim
6/6/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2]  https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35

