
Young Won Lim
8/4/18

Function Applicative (3A)

Young Won Lim
8/4/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Function Applicative
(3A) 3 Young Won Lim

8/4/18

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Function Applicative
(3A) 4 Young Won Lim

8/4/18

(->) r Applicative – pure

instance Applicative ((->) r) where

 pure x = (_ -> x)

 f <*> g = \x -> f x (g x)

When we wrap a value into an applicative functor with pure,

the result it yields always has to be applicative value.

A minimal default context that still yields that value as a result.

pure takes a value and creates a function

that ignores its parameter and

always returns that taken value.

the type for pure for the (->) r instance,

pure :: a -> (r -> a)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Function Applicative
(3A) 5 Young Won Lim

8/4/18

(->) r Applicative – pure examples

> (pure 3) "blah"

 3

> pure 3 "blah"

 3

Because of currying, function application is left-associative,

the parentheses can be eliminated

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Function Applicative
(3A) 6 Young Won Lim

8/4/18

(->) r Applicative – <*>

> :t (+) <$> (+3) <*> (*100)

(+) <$> (+3) <*> (*100) :: (Num a) => a -> a -- a function

> (+) <$> (+3) <*> (*100) $ 5

508

Calling <*> with two functions (applicative functors)

results in a function (an applicative functor)

(+) <$> (+3) <*> (*100) results in a function

that uses (+) on the results of (+3) and (*100) and return that result.

the 5 first got applied to (+3) and (*100), resulting in 8 and 500.

Then, (+) gets called with 8 and 500, resulting in 508.

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

using functions (+3), (*100)

as applicative functors

in the applicative style

Function Applicative
(3A) 7 Young Won Lim

8/4/18

(->) r Applicative – <*>

functions as boxes that contain their eventual results

so doing k <$> f <*> g creates a function

that will call k with the eventual results from f and g.

(+) <$> Just 3 <*> Just 5, we're using + on values

that might or might not be there,

which also results in a value

that might or might not be there.

(+) <$> (+10) <*> (+5), we're using + on the future return values

of (+10) and (+5) and the result is also something

that will produce a value only when called with a parameter.

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Function Applicative
(3A) 8 Young Won Lim

8/4/18

(->) r Applicative – pure

instance Applicative ((->) r) where

 pure x = (_ -> x)

 f <*> g = \x -> f x (g x)

pure :: a -> (r -> a)
f <*> g :: r ->b

class (Functor fr) => Applicative f where

 pure :: a -> fr a

 (<*>) :: fr (a -> b) -> fr a -> fr b

f b

b

fr f :: fr (a->b)

<*>

f

fr a

a

f<*>g::r->b

b

f::r->(a->b)

<*>

fn

g::r->a

a

pure fn :: r->(a->b)

fn::(a->b)

Function Applicative
(3A) 9 Young Won Lim

8/4/18

(->) r Applicative – <*>

fmap f x = pure f <*> x

(pure (+5)) <*> (*3) $ 4

(fmap (+ 5) (* 3)) 4

((+ 5) . (* 3)) 4 -- fmap = (.)

17

<*> essentially applies a function in the left functor

to a value in the right functor.

https://stackoverflow.com/questions/11810889/functions-as-applicative-functors-haskell-lyah

Function Applicative
(3A) 10 Young Won Lim

8/4/18

(->) r Applicative – <*>

The function functor specializes to (->) r

<*> applies

a function (a->b) returned by a function from r r->(a->b)

to a value a returned by a function from r r->a

the result of <*> must

be a function from r r->b

return a value of type (->) r an function applicative value

A function that returns a function is

just a function of two arguments. r->a->b

how to suply two arguments (r and a, returning b) (r->a)->b

https://stackoverflow.com/questions/11810889/functions-as-applicative-functors-haskell-lyah

Function Applicative
(3A) 11 Young Won Lim

8/4/18

(->) r Applicative – <*>

f <*> g = \x -> f x (g x)

Since a function taking a value of type r must be returned, x :: r.

The result function of <*> must have a type r -> b.

a function f :: r -> a -> b

r is the argument type of f

a function a -> b is returned by the function f

another function g :: r -> a

take the value of type r (the parameter x)

g is used to get a value of type a.

https://stackoverflow.com/questions/11810889/functions-as-applicative-functors-haskell-lyah

Function Applicative
(3A) 12 Young Won Lim

8/4/18

(->) r Applicative – <*>

use the parameter r

to get a value of type a

by plugging it into g :: r -> a.

The parameter has type r,

g has type r -> a,

so we have an a.

plug both the parameter r and

the new value a into f :: r -> a -> b .

plug both an r and an a in f :: r -> a -> b, we have a b.

Since the parameter is in a lambda, the result has a type r -> b

https://stackoverflow.com/questions/11810889/functions-as-applicative-functors-haskell-lyah

Function Applicative
(3A) 13 Young Won Lim

8/4/18

(->) r Applicative – <*>

(+) <$> (+3) <*> (*100) $ 5

pure (+) <*> (+3) <*> (*100) $ 5

pure (+) : boxing (+) as an Applicative.

to unbox pure (+), provide an additional argument,

with a type of r whose value which can be anything _->x

Applying <*> to (+) <$> (+3), pure (+) <*> (+3)

we get \x -> (pure (+)) x ((+3) x) f <*> g = \x -> f x (g x)

(pure (+)) x, we are applying x to pure to unbox (+).

\x -> (pure (+)) x ((+3) x)

\x -> (+) ((+3) x)

https://stackoverflow.com/questions/11810889/functions-as-applicative-functors-haskell-lyah

pure :: a -> fr a

pure :: a -> (r -> a)

pure x = (_ -> x)

pure :: (a->a->a) -> (r -> (a->a->a))

pure (+) = (_ -> (+))

Function Applicative
(3A) 14 Young Won Lim

8/4/18

(->) r Applicative – <*>

(+) <$> (+3) <*> (*100) $ 5

pure (+) <*> (+3) <*> (*100) $ 5

appending (*100) to get (+) <$> (+3) <*> (*100)

and apply <*> again, we get

\x -> (pure (+)) x ((+3) x) ((*100) x)

\x -> (+) ((+3) x) ((*100) x)

the x after f is NOT the first argument (pure (+)) x

to our binary operator (+),

x is used to UNBOX the operator (+) inside pure.

https://stackoverflow.com/questions/11810889/functions-as-applicative-functors-haskell-lyah

Function Applicative
(3A) 15 Young Won Lim

8/4/18

(->) r Applicative – <*>

remeber that pure (+5) discards its first argument,

so it's const (+5) 4 $ (4 * 3) or 4 * 3 + 5

which is consistent with (+5) . (*3) $ 4.

Additionally, f <*> g = \x -> f (g x)

is of type (b -> c) -> (a -> b) -> (a -> c)

which neither typechecks with pure (+ 5) <*> (* 3) $ 4

nor the class declaration of Applicative

https://stackoverflow.com/questions/11810889/functions-as-applicative-functors-haskell-lyah

Young Won Lim
8/4/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16

