
Alignment

Young W. Lim

2020-11-17 Tue

Young W. Lim Alignment 2020-11-17 Tue 1 / 16



Outline

1 Introduction
References
Alignmnet Background

Young W. Lim Alignment 2020-11-17 Tue 2 / 16



Based on

"Self-service Linux: Mastering the Art of Problem Determination", Mark
Wilding
"Computer Architecture: A Programmer’s Perspective", Bryant &
O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Alignment 2020-11-17 Tue 3 / 16



Alignment (1)

fundamental data types 2, 4, 8, bytes etc
simple hardware design
alignment restrictions
the IA32 hardware works correctly
but with performance degradation
short data address : lsb is always 0
int data address : 2 lsb’s are always 00

Young W. Lim Alignment 2020-11-17 Tue 4 / 16



Alignment (2)

the IA32 hardware will work correctly regardless of
the alignment of data
Intel recommends that data be aligned
to improve memory system performance
Linux follows an alignment policy where 2-byte data type
(e.g. short) must have an address that is a multiple of 2
while any larger data types (e.g. int, int *, float, double)
must have an address that is a multiple of 4.
Note that this requirement means that the least significant bit
of the address of an object of type short must equal to 0
Similary any object of type int or any pointer
must be at an address having the low-order two bits equal to 0

Young W. Lim Alignment 2020-11-17 Tue 5 / 16



Alignment (3)

alignment is enforced by making sure that every data type
is organized and allocatedin such a way that every object
within the type satisfies its alignment restrctions
the compiler places directives in the assembly code
indicating the desired alignment for global data
the assembly code declarartion of the jump table
contains the following directive
.align 4

Young W. Lim Alignment 2020-11-17 Tue 6 / 16



Alignment (4)

.align 4

this ensures that the data following it
(in this case the start of the jump table)
will start with an address that is a multiple of 4
since each table entry is 4 byte long
the successive elements will obey the 4-byte alignment restriction

Young W. Lim Alignment 2020-11-17 Tue 7 / 16



Alignment (5)

library routines that allocate memory such as malloc()
must be designed so that they return a pointer
that satisfies the worst-case alignment restriction
for the machine it is running on, typically 4 or 8

for code involving structures, the compiler may need
to insert gaps in the field allocation to ensure that
each structure element satisfies its alignment requirement
the structure then has some required alignment
for its starting address

Young W. Lim Alignment 2020-11-17 Tue 8 / 16



Alignment (6)

consider the following structure declaration
struct S1 {

int i;
char c;
int j;

};

suppose the compiler used the minimal 9-byte allocation
then it would be impossible to satisfy the 4-byte alignment
requirement for both fields i (offset 0) and j (offset 5)

instead the compiler inserts a 3-byte gap

Young W. Lim Alignment 2020-11-17 Tue 9 / 16



Alignment (7)

as a result, j has offset 8, and the overall structure
size is 12 bytes
the compiler must ensure that any pointer p of the type
struct S1 * satisfies a 4-byte alignment
let pointer p->i (address xp) and
p->j (address xp + 4) will satisfy their 4-byte
alignmet requirement

Young W. Lim Alignment 2020-11-17 Tue 10 / 16



Alignment (8)

consider the following structure declaration
struct S2 {

int i;
int j;
char c;

};

if we pack this structure into 9 bytes, we can still
satisfy the alignment requirements for fields i and j
by making sure that the starting address of the structure
satisfies a 4-byte alignment requirement

Young W. Lim Alignment 2020-11-17 Tue 11 / 16



Alignment (9)

struct S2 d[4];

with the 9-byte allocation, it is not possible
to satisfy the alignment requirement for each element of d
because these elements will have addresses
xd , xd + 9, xd + 18, xd + 27
instead the compiler will allocate 12 bytes for structure S1
with the final 3 bytes being waste space

Young W. Lim Alignment 2020-11-17 Tue 12 / 16



Alignment (10)

struct S1 d[4];

instead, the compiler will allocate 12 bytes
for structure S1
with the final 3 bytes being wated space
that way the element of d will have addresses
xd , xd + 12, xd + 24, xd + 36
as long as xd is a multiple of 4
all of the alignment restrictions will be satisfied

Young W. Lim Alignment 2020-11-17 Tue 13 / 16



Enforcing Alignment

command line flag
-malign-double : 8-byte alignment

assembler directive
.align 4

Young W. Lim Alignment 2020-11-17 Tue 14 / 16



Structure Alignment (1)

struct S1 {
int i;
char c;
int j;

};

minimal 9-byte allocation
offset:
0x00 i
0x04 c
0x05 j

4-byte alignment
3 bytes gap is inserted after c

offset:
0x00 i
0x04 c
0x08 j

Young W. Lim Alignment 2020-11-17 Tue 15 / 16



Structure Alignment (2)

struct S1 {
int i;
int j;
char c;

};

struct S2 A[2];

4-byte alignment
3 bytes padding is inserted
after c

offset:
0x00 A[0].i
0x04 A[0].j
0x08 A[0].c
0x0C A[1].i
0x10 A[1].j
0x14 A[1].c

Young W. Lim Alignment 2020-11-17 Tue 16 / 16


	Introduction
	References
	Alignmnet Background


