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Linerr Fumctionad
Linear form

From Wikipedia, the free encyclopedia
(Redirected from Linear functional)

V> &

In linear algebra, a linear functional or linear form (also called a one-form or
covector) is a linear map from a vector space to its field of scalars. In R", if vectors are
represented as column vectors, then linear functionals are represented as|row veciors]

and their action on vectors is given by the|dot product)or thgl matrix product with the row

“Vector oron the el and the column vector on the right] In general, if V is a vector space
— ovel(a field k) then a linear functional fis a function from V to k that is linear:

flv+ u'.’} = f(ﬁ}—|—f(u7)fﬂrallff_u7 cV
flav) = af (V)foral i € V,a € k.

The set of all linear functionals from V to k, Hom(V.k), forms a vector space over k with

— the addition of the operations of addition and scalar multiplication (defined pointwise).

— This space is called the dual space of V, or sometimes the algebraic dual space, to

distinguish it from the continuous dual space. It is often written V* or V' when the field k
is understood.
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Linear functionals in R [edit]

Suppose that vectors in the real coordinate space R" are represented as column vectors
u

Iy

Then any linear functional can be written in these coordinates as a sum of the form:

f(Z) = ayz1 + - - + apxn.

This is just the matrix product of the row vector [a; ... a,] and the column vector

£y

f(f) = [Hfl . -a'n]

Ln

F(B+B)= () ¢ (D

fooa)= p £D)
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Linear map V-V

From Wikipedia, the free encyclopedia \} % &

In mathematics, a linear map (also called a linear mapping, linear transformation or, in
some contexts, linear function) is a mapping V' — W between two modules (including vector

spaces) that preserves (in the sense defined below) the operations of addition and scalar

multiplication. Linear maps can often be represented as matrices, and simple examples

include rotation and reflection linear transformations.
retiecuon

An important special case is when V = W, in which case the map is called a linear operator,

or an endomorphism of V. Sometimes the term linear function has the same meaning as linear
map, while in analytic geometry it does not.

A linear map always maps linear subspaces onto linear subspaces (possibly of a lower
dimension); for instance it maps a plane through the origin to a plane, straight line or point.

In the language of abstract algebra, a linear map is a module homomorphism. In the language
of category theory it is a morphism in the category of modules over a given ring.
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Category theory

From Wikipedia, the free encyclopedia

Category thenryll] formalizes mathematical f

structure and its concepts in terms of a collection of X
objects and of arrows (also called morphisms). A
category has two basic properties: the ability to

compose the arrows associatively and the existence

of an identity arrow for each object. The language of g
category theory has been used to formalize qo f

concepts of other high-level abstractions such as Y
sets, rings, and groups. Z
Several terms used in category theory, including the Schematic representation ofa =~
term "morphism®”, are used differently from their category with objects X, ¥, Z and

morphisms f, g, g = f. (The
category's three identity
morphisms 1y, 1y and 1z, if
theory itself. explicitly represented, would
appear as three arrows, next to
the letters X, Y, and Z,
introduced the concepts of categories, functors, and respectively, each having as its

natural transformations in 1942—45 in their study of "shaft" a circular arc measuring
almost 360 degrees.)

uses in the rest of mathematics. In category theory,
morphisms obey conditions specific to category

Samuel Eilenberg and Saunders Mac Lane

algebraic topology, with the goal of understanding
the processes that preserve mathematical structure,
and influenced by previous related ideas by Polish and German mathematicians. Category
theory has practical applications in programming language theory, in particular for the
study of monads in functional programming. @




Morphism

From Wikipedia, the free encyclopedia

(Redirected from Hom-set)

|
— In many fields of mathematics, morphism refers to a structure-preserving map from one

—mathematical structure to another. The notion of morphism recurs in much of

contemporary mathematics. In set theory, morphisms are functions; in linear algebra,

linear transformations; in group theory, group homomorphisms; in topology, continuous

functions, and so on.

—— In category theory, morphism is a broadly similar idea, but somewhat more abstract: the

—— mathematical objects involved need not be sets, and the relationship between them may

— be something more general than a map.

~ The study of morphisms and of the structures (called "objects"”) over which they are

— defined is central to category theory. Much of the terminology of morphisms, as well as the
— intuition underlying them, comes from concrete categories, where the objects are simply
—— sets with some additional structure, and morphisms are structure-preserving functions. In

—— category theory, morphisms are sometimes also called arrows.




Functor

From Wikipedia, the free encyclopedia

In mathematics, a functor is a type of mapping between categories which is applied in

category theory. Functors can be thought of as homomorphisms between categories. In

the category of small categories, functors can be thought of more generally as morphisms.

Functors were first considered in algebraic topology, where algebraic objects (like the

fundamental group) are associated to topological spaces, and algebraic homomorphisms

are associated to continuous maps. Nowadays, functors are used throughout modern
mathematics to relate various categories. Thus, functors are generally applicable in areas
within mathematics that category theory can make an abstraction of.

The word functor was borrowed by mathematicians from the philosopher Rudolf Carﬂap,[l]

who used the term In a linguistic context:?l see function word.
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modulp,

In mathematics, a module is one of the fundamental algebraic structures used in
abstract algebra. A module over a ring is a generalization of the notion of vector space

over a field, wherein the corresponding scalars are the elements of an arbitrary given
ring (with identity) and a multiplication (on the left and/or on the right) is defined

— between elements of the ring and elements of the module.
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CATing is an algebraic system consisting of a set,
~an identity element for each operation,

@operations and the inverse operation of the first operation. ——




Suppose that R is a ring and 15, is its multiplicative identity. A left R-module M consists of an

abelian group (M, +) and an operation - : R x M - M such that for all r, s in R and x, y in M, we

have:

Lr-(z+y)=r-z+r -y
2.(r+s8) - z=r-z+s 2

3(r8)-z=r-(s-2)

4 1g-xz=u=x.

The operation of the ring on M is called scalar multiplication, and is usually written by

juxtaposition, i.e. as rx for rin R and x in M, though here it is denoted as r - x to distinguish it

from the ring multiplication operation, denoted here by juxtaposition. The notation gM indicates a
left R-module M. A right R-module M or Mg is defined similarly, except that the ring acts on the

right; i.e., scalar multiplication takes the form - : M x R — M, and the above axioms are written

with scalars r and s on the right of x and y.
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In mathematics, an algebra is one of the fundamental algebraic structures

used in abstract algebra. An algebra over a field is a vector space (a

module over a field) equipped with a bilinear product. Thus, an algebra over

a field is a set, together with operations of multiplication, addition, and

scalar multiplication by elements of the underlying field, that satisfy the
axioms implied by "vector space" and "bilinear".[1]

The multiplication operation in an algebra may or may not be associative, leading to
the notions of associative algebras and nonassociative algebras. Given an integer n, T
the ring of real square matrices of order n is an example of an associative algebra over ——
the field of real numbers under matrix addition and matrix multiplication. Three- —
dimensional Euclidean space with multiplication given by the vector cross productisan
example of a nonassociative algebra over the field of real numbers.
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Bilinear map

From Wikipedia, the free encyclopedia

In mathematics, a bilinear map is a function combining elements of two vector spaces to

yield an element of a third vector space, and is linear in each of its arguments. Matrix

— multiplication is an example.

Vector spaces |edit ]

Let V, W and X be three vector spaces over the same base field F. A bilinear map is a
function

B:VxW-X

such that for any@in W the map

v B(v,(w)

is a linear map from V to X, and for any@n V the map

w e B1)w)

is a linear map from W to X.

In other words, when we hold the first entry of the bilinear map fixed while letting the

second entry vary, the result is a linear operator, and similarly for when we hold the second

entry fixed.

If Vv = W and we have Blv, w) = B(w, v) for all v, win V, then we say that B is symmetric.

The case where X is the base field F, and we have a bilinear form, is particularly useful

(see for example scalar product, inner product and quadratic form).




Modules | cadit]

The definition works without any changes if instead of vector spaces over a field F, we use
modules over a commutative ring R. It generalizes to n-ary functions, where the proper term is
multilinear.

For non-commutative rings R and S, a left R-module M and a right S-module N, a bilinear map is a
map B : M xN - Twith T an (R, S)-bimodule, and for which any@n N, m = E{m@ Is an R-
module homomorphism, and for any@in M,nw B@ n) is an S-module homomorphism. This
satisfies

B(r-m,n)=r- B(m, n)
B(m,n-s)=B(m,n)-s

foralminM,nin N, rin R and sin S, as well as B being additive in each argument.




Bilinear form

From Wikipedia, the free encyclopedia

In mathematics, more specifically in abstract algebra and linear algebra, a bilinear form
on a vector space V is a bilinear map V x V = K, where K is the field of scalars. In other
words, a bilinear form is a function B : V x V = K which is linear in each argument
separately:

s Blu+v,w)=5B(u,w) + Blv, w)
« Blu, v+ w)=E8(u,v)+ Blu, w)
s B{Au, v) = Blu, Av) = AB(u, v)
The definition of a bilinear form can be extended to include modules over a commutative

ring, with linear maps replaced by module homomorphisms.

When K is the field of complex numbers C, one is often more interested in sesquilinear
forms, which are similar to bilinear forms but are conjugate linear in one argument.
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In topology and related branches of mathematics, a topological space may be defined as
a set of points, along with a set of neighbourhoods for each point, that satisfy a set of

axioms relating points and neighbourhoods. The definition of a topological space relies

only upon set theory and is the most general notion of a mathematical space that allows for

the definition of concepts such as continuity, connectedness, and convergence.!l! Other
spaces, such as manifolds and metric spaces, are specializations of topological spaces with
extra structures or constraints. Being so general, topological spaces are a central unifying
notion and appear in virtually every branch of modern mathematics. The branch of
mathematics that studies topological spaces in their own right is called point-set topology

or general topology.
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— | place, and Aoyoc, study) is concerned with the
properties of space that are preserved under

bending, but not tearing or gluing. This can be
studied by considering a collection of subsets, called

given set into what is known as a topological space.

In mathematics, topology (from the Greek Tonoc, r-

continuous deformations, such as stretching and

open sets, that satisfy certain properties, turning the 5»

Mébius strips, which have only one =/

| Important topological properties include surface and one edge, are a kind of

connectedness and compactness.[1] object studied in topology.
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Functor

— Definition [ edit ] -

Let C and D be categories. Alfunctor|F from C to D is a mapping that!?]

« associates to each object X in € an object F(X) in D,

» associates to each morphism f : X = Y in C a morphism
F(f) : F(X) — F(Y) in D such that the following two conditions hold:

- « F(idx) = idF{I] for every object X in C,
~ « F(go f) = F(g) o F(f) for all morphisms f : X — Y and B

o g:Y—= ZincC. B
——That is, functors must preserve identity morphisms and composition of -
——morphisms. -
) ctenory — AR —
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Evariance and cuntralvariance [ edit ]

There are many constructions in mathematics that would be functors but for

the fact that they "turn morphisms around" and "reverse composition". We then _

define a :nntrﬂvariant functor F from C to D as a mapping that

» associates to each object X in € an object F(X) in D,
» associates to each morphism f : X = Y in C a morphism
F(f): F(Y) = F(X) in D such that

« F(idx) = idp(x) for every object X in C,

« F(go f) = F(f) o F(g) for all morphisms f : X = ¥ and

g:Y = Zinc.

Mote that contravariant functnrsgreverse the direction of composition.

Ordinary functors are also called

them from contravariant ones. Note that one can also define a contravariant
functor as a[covariant functor on the opposite category C°P.[*] Some authors

Evariant functors in order to distinguish

prefer to write all expressions covariantly. That is, instead of saying

F : C = Dis a contravariant functor, they simply write F' : C°P? — D (or

sometimes F' : C — D) and call it a functor.

Contrajvariant functors are also occasionally called cofunctors.[®]
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Homomorphism

From Wikipedia, the free encyclopedia

In abstract algebra, a homomorphism is a structure-preserving map between two

algebraic structures (such as groups, rings, or vector spaces). The word homomaorphism

comes from the ancient Greek language: duoc (homos) meaning "same" and pop@r]

(morphe) meaning "form™ or "shape”. Isomorphisms, automorphisms, and endomorphisms

are special types of homomorphisms.

A homomorphism is a map that preserves selected structure between two algebraic

structures, with the structure to be preserved being given by the naming of the

homomarphism.
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A category C consists of two classes, one of|objects|and the other of ymorphismg.

There are two objects that are associated to every morphism, the [source|and the[farget]

_____For many common categories, objects ane{usu::llly,r with more structure) and

morphisms are Eunctiﬂns :frum an object to another object. Therefore the source and the

target of a morphism are often called respectively [domain land|codomain. |

—— A morphism fwith source X and target ¥ is written f: X — Y. Thus a morphism is
—— represented by an arrow from its source to its target.

Morphisms are equipped with a partial binary operation, called cumgc:sfn'ﬂn. The

composition of two morphism f and g is defined if and only if the target of g is the source of
— f,and is denoted feg. The source of feg is the source of g, and the target of feg is the
—target of f. The composition satisfies two axioms:

Identity: for every object X, there exists a morphism idy : X — X called the identity
morphism on X, such that for every morphism f: A — Bwe have idg = f=f=1 ¢ idg4.
Associativity: h = (g = ) = (h = g) = fwhenever the operations are defined, that is

when the target of fis the source of g, and the target of g is the source of h.




Types [edit]

In abstract algebra, [Proof 1] [show]

several specific kinds of

homomorphisms are [Proof 2] [show]

defined as follows: [Proof 3] [show]

+ Anjlisomorphismlis

a bijective homomorphism.

« An epimorphism (sometimes called a
cover) is a surjective homomorphism.
Equivalently, [note 11f: A — B is an
epimorphism if it has a right inverse g: B
-+ A, i.e.if flgib)) = bforall b €B.

« A monomorphism (sometimes called
an embedding or extension) is an
injective homomorphism. Equivalently,
[note 11 £: A - B is a monomorphism if it
has a leftinverse g: B =+ A, i.e. if g(f{a)) =
aforalla e A.

+« Anlendomorphism|is a homomorphism
from an algebraic structure to itself.

« An|lautomorphism |s an endomorphism
which is also an isomorphism, i.e., an

isomorphism from an algebraic
structure to itself.[1]

+ The trivial homomorphism between

Relationships between different
kinds of homomeorphisms.

Hom = set of Homomorphisms,
Mon = set of Monomorphisms,
Epi = set of Epimorphisms,

Iso = set of Isomorphisms,

End = set of Endomorphism,
Aut = set of Automorphisms.
MNotice that: Mon n Epi = Iso,
Iso n End = Aut.

The sets (Mon n End) \ Aut and
(Epi n End) \ Aut contain only
homomeorphisms from some infinite
structures to themselves.

unital magmas is the constant map onto the identity element of the

codomain.[?]




[Se mofphism

morphe "form" or "shape") is a homomorphism or

them. An automorphism is an isomorphism whose

In mathematics, an isomorphism (from the

Ancient Greek: {ooc isos "equal”, and poper

morphism (i.e. a mathematical mapping) that
admits an inverse.[note 11 Two mathematical objects

are isomorphic if an isomorphism exists between

source and target coincide. The interest of
isomorphisms lies in the fact that two isomorphic

objects cannot be distinguished by using only the

properties used to define morphisms; thus

isomorphic objects may be considered the same as
long as one considers only these properties and

their consequences.

For most algebraic structures, including groups and rings, a homomorphism is an

isomorphism if and only if it is bijective.

called homeomorphisms or bicontinuous functions. In mathematical analysis,
where the morphisms are differentiable functions, isomorphisms are also called

diffeomorphisms.

In topology, where the morphisms are continuous functions, isomorphisms are also



In mathematics, an endomorphism is a morphism (or homomorphism) from
a mathematical object to itself. For example, an endomorphism of a vector
space, Vis a linear map, f: V —= V, and an endomorphism of a group, G, isa
group homomorphism f: G - G. In general, we can talk about
endomorphisms in any category. In the category of sets, endomorphisms are
functions from a set 5 to itself.

In any category, the composition of any two endomorphisms of X is again an
endomorphism of X. It follows that the set of all endomorphisms of X forms a
monoid, denoted End(X) (or End(X) to emphasize the category C).

An invertible endomorphism of X is called an automorphism. The set of all automorphisms is a
subset of End(X) with a group structure, called the automorphism group of X and denoted
Aut(X). In the following diagram, the arrows denote implication:
Automorphism = Isomorphism
I I

Endomorphism = (Homo)morphism




In mathematics, an automorphism is an isomorphism from a
mathematical object to itself. It is, in some sense, a symmetry of the
object, and a way of mapping the object to itself while preserving all
of its structure. The set of all automorphisms of an object forms a
group, called the automorphism group. It is, loosely speaking, the
symmetry group of the object.







— For a concrete category (that is the objects are sets with additional structure, and of the
— morphisms as structure-preserving functions), the identity morphism is just the identity .
~ function, and composition is just the ordinary composition of functions. Associativity then
~ follows, because the composition of functions is associative.

——— The composition of morphisms is often represented by a commutative diagram. For —
— example, o

R f —

XN ——Y

The collection of all morphisms from X to Y is denoted homg(X,Y¥) or simply hom(X, ¥) and
called thelhom-set|between X and Y. Some authors write Mor(X,Y), Mor(X, ¥) or C(X,
¥). Note that the term hom-set is something of a misnomer as the collection of morphisms

Is not required to be a set. A category where hom(X, Y) is a set for all objects X and Y is

called locally small.
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Hom (X, ‘f)
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MNote that the domain and codomain are in fact part of the information determining a
morphism. For example, in the category of sets, where morphisms are functions, two
functions may be identical as sets of ordered pairs (may have the same range), while
having different codomains. The two functions are distinct from the viewpoint of category
theory. Thus many authors require that the hom-classes hom(X, ¥) be disjoint. In practice,
this is not a problem because if this disjointness does not hold, it can be assured by
appending the domain and codomain to the morphisms, (say, as the second and third
components of an ordered triple).




Functional |(mathematics)

From Wikipedia, the free encyclopedia

— Not to be confused with functional notation.

In mathematics, and
— particularly in
functional analysis

and the calculus of

variations, a

functional is a The arc length functional has as its domain the vector space =

function from a of rectifiable curves (a subspace qu"[ [I:I! 1]] RE')}. and
_ vector space into its outputs a real scalar. This is an example of a non-linear
underlying scalar functional.
field, or a set of
~ functions of the real numbers. In other words, it AJ’
is a function that takes a vector as its input
argument, and returns a scalar. Commonly the [
vector space is|a space of functions] thus the f(x)
functional takes a function for its input
- argument, then it is sometimes considered a
— function of a function (a higher-order function). S
— Its use originates in the calculus of variations >
~ wWhere one searches for a function that a b x
minimizes a certain functional. A particularly The Riemann integral is a linear
- important application in physics is searching functional on the vector space of
I S Riemann-integrable functions from
for a state of a system that minimizes the RtoR.

—— energy functional.
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Functional details [ edit ]

— Duality [edit]

The mapping

Ty — f(fﬂn)

is a[function)where x; is an hrgument]of a function f. At the same time, the

mapping of a function to the value of the function at a point

f = flzo)

is a|functional| here x is alparameter

Provided that fis a linear function from a(linear vector spacg to the underlying

(scalar ﬁe@ the above{linear maps

are dual to each other, and in functional

analysis both are r:aIIE;g linear functinnals.%& lineon, Fumchional
linear form e
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Definite integral | cdit]

Integrals such as

[ I = [ H(f@), f(@)...) plde)
— form a special class of functionals. They map a function finto a real number,

~ provided that H is real-valued. Examples include

. the underneath the graph of a positive function f

1

fr= flz) da

T

s|LF nnrml of functions

£ (/|f|?d:c)up

. the of a curve in 2-dimensional Euclidean space
z1
fo [ VIFIF@P do
z0

% Vector scalar product | cdit]

Given any vector & in a vector space X, the scalar product with another vector 3}',
—— denoted ¥ - ¢/ Dr{:i:',*g'}, is a scalar. The set of vectors F such that ¥ - if iszerois a
vector subspace of X, called the null space or kernel of X.
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Function spaces | edit]

Functions from any fixed set Q to a field F also form vector spaces, by performing

addition and scalar multiplication pointwise. That is, the sum of two functions fand g
is the function (f + g) given by

(f + g)w) = flw) + g(w),
and similarly for multiplication. Such function spaces occur in many geometric
situations, when £ is the real line or an interval, or other subsets of R. Many notions
in topology and analysis, such as continuity, integrability or differentiability are
well-behaved with respect to linearity: sums and scalar multiples of functions
possessing such a property still have that property.[14] Therefore, the set of such
functions are vector spaces. They are studied in greater detail using the methods of
functional analysis, see below. Algebraic constraints also yield vector spaces: the
vector space F[x] is given by polynomial functions:

fix) =rg+ rix + ... + r,_ X1+ r,x", where the coefficients ry,. ..., r, are in F.[15]
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Function space

From Wikipedia, the free encyclopedia

In mathematics, a function space is a set of

functions of a given kind fromaset Xto a
set Y. It is called a space because in many
applications it is a topological space
(including metric spaces), a vector space, or
both. Namely,@‘f is a field, functions have
inherent vector structure with two operations
of pointwise addition and multiplication to a
scalar. Topological and metrical structures of
function spaces are more diverse.
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Functional analysis

From Wikipedia, the free encyclopedia

For the assessment and treatment of human behavior, see Functional analysis
(psychology).

Functional analysis is a branch of mathematical
analysis, the core of which is formed by the study of
vector spaces endowed with some kind of limit-
related structure (e.g. inner product, norm,
topology, etc.) and the linear operators acting upon
these spaces and respecting these structures in a

One of the possible modes =
suitable sense. The historical roots of functional of vibration of an idealized

analysis lie in the study of spaces of functions and circular drum head. These
modes are eigenfunctions of

the formulation of properties of transformations of i
a linear operator on a

functions such as the Fourier transform as function space, a common
transformations defining continuous, unitary etc. construction in functional
analysis.

operators between function spaces. This point of
view turned out to be particularly useful for the
study of differential and integral equations.













